Skip to main content
Log in

Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasil–polyethylene oxide hybrid) blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the effect of chitosan blending on the thermal properties, nanoscopic structure and swelling behavior of ureasil–polyethylene oxide (U-PEO) hybrid materials was examined. Materials were prepared by the sol–gel route using acid catalysts, and the effect of acid (hydrochloric or acetic acid) was also examined. Differential scanning calorimetry results showed that chitosan addition did not provoke appreciable changes in the thermal behavior of the U-PEO. Thermogravimetric curves did not show changes in thermal stability resulting from chitosan blending but were depended on the type of acid catalyst. Small-angle X-ray scattering and nuclear magnetic resonance spectroscopy techniques were used for studying nanoscopic and inner structures, showing the existence of two structural levels and differences in polycondensation degrees. All samples presented fast water uptake with the same initial swelling rate and with a non-Fickian or anomalous transport mechanism. Swelling degree was higher in hybrids prepared with HCl, which possessed less branched siloxane cross-link nodes species, therefore lower polycondensation degree. Also, the magnitude of swelling decreased for hybrids blended with chitosan, which provides a means of tailoring the water uptake by the ureasil–PEO hybrid and to potentiate the control of the release profile of drugs incorporated in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Molina EF, Pulcinelli SH, Briois V, Santilli CV. Fine-tuning of a nanostructure, swelling, and drug delivery profile by blending ureasil-PEO and ureasil-PPO hybrids. Polym Chem. 2014;5:1897–904.

    Article  CAS  Google Scholar 

  2. Lopes L, Molina EF, Chiavacci LA, Santilli CV, Briois V, Pulcinelli SH. Drug–matrix interaction of sodium diclofenac incorporated into ureasil-poly(ethylene oxide) hybrid materials. RSC Adv. 2012;2:5629–36.

    Article  CAS  Google Scholar 

  3. Molina EF, Parreira RLT, De Faria EH, De Carvalho HWP, Caramori GF, Coimbra DF, et al. Ureasil-poly(ethylene oxide) hybrid matrix for selective adsorption and separation of dyes from water. Langmuir. 2014;30:3857–68.

    Article  CAS  Google Scholar 

  4. Molina EF, Marçal L, Carvalho HWP, Nassar EJ, Ciuffi KJ. Tri-ureasil gel as a multifunctional organic–inorganic hybrid matrix. Polym Chem. 2013;4:1575–82.

    Article  CAS  Google Scholar 

  5. Moura ALA, de Oliveira LK, Ciuffi KJ, Molina EF. Influence of the hydrophilic/hydrophobic nature of polyetheramines on the interaction between amine–alcohol–silicate hybrids and anionic dyes for effective water cleaning. J Mater Chem A. 2015;3:16020–32.

    Article  CAS  Google Scholar 

  6. Paredes Zaldivar M, Pulcinelli SH, Peniche C, Gonçalves V, Santilli CV. Chitosan/(ureasil-PEO hybrid) blend for drug delivery. J Sol-Gel Sci Technol. 2014;72:233–8.

    Article  Google Scholar 

  7. Wu N, Wang LS, Tan DCW, Moochhala SM, Yang YY. Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights. J Control Release. 2005;102:569–81.

    Article  CAS  Google Scholar 

  8. Santilli CV, Chiavacci LA, Lopes L, Pulcinelli SH, Oliveira AG. Controlled drug release from ureasil-polyether hybrid materials. Chem Mater. 2009;21:463–7.

    Article  CAS  Google Scholar 

  9. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–92.

    Article  CAS  Google Scholar 

  10. Laranjeira MCM, Fávere VT. Biopolímero Funcional com Potencial Industrial Biomédico. Quim Nova. 2009;32:672–8.

    Article  CAS  Google Scholar 

  11. Kim B, La Flamme K, Peppas NA. Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci. 2003;89:1606–13.

    Article  CAS  Google Scholar 

  12. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  13. Serra L, Doménech J, Peppas NA. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. 2006;27:5440–51.

    Article  CAS  Google Scholar 

  14. Santos JE, Soares JP, Dockal ER, Campana Filho SP, Cavalheiro ÉTG. Caracterização de quitosanas comerciais de diferentes origens. Polímeros. 2003;13:242–9.

    Article  Google Scholar 

  15. Wunderlich B. Macromolecular physics. New York: Academic Press; 1980.

    Google Scholar 

  16. Ziegler-Borowska M, Chełminiak D, Kaczmarek H. Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) salt. J Therm Anal Calorim. 2014;119:499–506.

    Article  Google Scholar 

  17. Barbosa PC, Fernandes M, Vilela SMF, Gonçalves A, Oliveira MC, Fortunato E, et al. Di-ureasil hybrids doped with LiBF4: attractive candidates as electrolytes for “Smart Windows”. Int J Electrochem Sci. 2011;6:3355–74.

    CAS  Google Scholar 

  18. Ziegler-Borowska M, Chelminiak D, Kaczmarek H, Kaczmarek-Kedziera A. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite. J Therm Anal Calorim. 2016;124:1267–80.

    Article  CAS  Google Scholar 

  19. Pereira FS, Lanfredi S, González ERP, da Silva Agostini DL, Gomes HM, dos Santos Medeiros R. Thermal and morphological study of chitosan metal complexes. J Therm Anal Calorim. 2017;. doi:10.1007/s10973-017-6146-2.

    Google Scholar 

  20. Ivanković M, Brnardić I, Ivanković H, Huskić M, Gajović A. Preparation and properties of organic–inorganic hybrids based on poly(methyl methacrylate) and sol–gel polymerized 3-glycidyloxypropyltrimethoxysilane. Polymer. 2009;50:2544–50.

    Article  Google Scholar 

  21. Hoebbel D, Nacken M, Schmidt H. A NMR study on the hydrolysis, condensation and epoxide ring-opening reaction in sols and gels of the system glycidoxypropyltrimethoxysilane-water-titaniumtetraethoxide. J Sol-Gel Sci Technol. 1998;12:169–79.

    Article  CAS  Google Scholar 

  22. Romeo HE, Fanovich MA, Williams RJJ, Matějka L, Pleštil J, Brus J. Self-assembly of a bridged silsesquioxane containing a pendant hydrophobic chain in the organic bridge. Macromolecules. 2007;40:1435–43.

    Article  CAS  Google Scholar 

  23. Brinker CJ, Scherer GW. Sol–gel science. The physics and chemistry of sol-gel processing. San Diego: Academic Press; 1990.

    Google Scholar 

  24. Santilli CV, Sarmento VHV, Dahmouche K, Pulcinelli SH, Craievich AF. Effects of synthesis conditions on the nanostructure of hybrid sols produced by the hydrolytic condensation of (3-methacryloxypropyl)trimethoxysilane. J Phys Chem C. 2009;113:14708–14.

    Article  CAS  Google Scholar 

  25. Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, et al. Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules. 2000;33:1940–7.

    Article  CAS  Google Scholar 

  26. Fasce DP, Williams RJJ, Méchin F, Pascault JP, Llauro MF, Pétiaud R. Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules. 1999;32:4757–63.

    Article  CAS  Google Scholar 

  27. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  Google Scholar 

  28. Curran MD, Stiegman AE. Morphology and pore structure of silica xerogels made at low pH. J Non Cryst Solids. 1999;249:62–8.

    Article  CAS  Google Scholar 

  29. Guinier A, Fournet G. Small-angle scattering of X-rays. Progress in crystal growth and characterization. New York: Wiley; 1955.

    Google Scholar 

  30. Hammouda B. A new Guinier–Porod model. J Appl Crystallogr. 2010;43:716–9.

    Article  CAS  Google Scholar 

  31. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  Google Scholar 

  32. Chime SA, Onunkwo GC, Onyishi II. Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review. Res J Pharm Biol Chem Sci. 2013;4:97–103.

    CAS  Google Scholar 

  33. Podual K, Doyle F, Peppas NA. Modeling of water transport in and release from glucose-sensitive swelling-controlled release systems based on poly(diethylaminoethyl methacrylate-g-ethylene glycol). Ind Eng Chem Res. 2004;43:7500–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has received financial support from: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Fundação de Amparo à Pesquisa no Estado de São Paulo—FAPESP and Programa de Apoio a Estudantes de Doutorado do Exterior—PAEDEx. We acknowledge the National Synchrotron Light Laboratory, Campinas, Brazil—LNLS for provision of synchrotron radiation facilities at the SAXS1 beamline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayté Paredes Zaldivar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes Zaldivar, M., Santilli, C.V., Peniche Covas, C.A. et al. Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasil–polyethylene oxide hybrid) blends. J Therm Anal Calorim 130, 791–798 (2017). https://doi.org/10.1007/s10973-017-6454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6454-6

Keywords

Navigation