Skip to main content
Log in

Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new product was designed and produced based on silver decorated halloysite nanotube and polypropylene (PP), as a novel nanocomposite. Using sodium borohydride as chemical reductant, silver nanoparticles decorated on halloysite nanotubes were simply and effectively synthesized via the assistance of polyvinylpyrrolidone (PVP) as a surface modifier and also co-capping agent for decoration of halloysite nanotubes. The adsorption of PVP on the surface of the halloysite nanotube by using chemical and physical interactions or electrostatic effects could enhance the stability and dispersibility of silver nanoparticles on the surfaces of halloysite nanotubes. Silver decorated halloysite nanotubes were used to prepare PP nanocomposites by melt compounding method. A wide range of silver decorated halloysite nanotube loading on PP was fabricated (i.e., 2–8 mass%). The PP nanocomposites with silver decorated nanotubes exhibit concurrence increase in thermal properties. Morphology studies show that silver decorated halloysite nanotubes can be dispersed in PP uniformly at higher filler loading. DSC studies confirmed that the decorated halloysite nanotubes facilitate the crystallization of PP due to the heterogeneous nucleation. Silver decorated halloysite as filler for PP showed good perspectives in piping industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jawaid M, Qaiss A, Bouhfid R. Nanoclay reinforced polymer composites. Berlin: Springer; 2016.

    Book  Google Scholar 

  2. Laske S. Polymer nanoclay composites. Amsterdam: Elsevier; 2015.

    Google Scholar 

  3. Triantou MI, Tarantili PA. The effect of organoclay and graphene on the crystallization of PP in ABS/PP blends. J Therm Anal Calorim. 2017;129:743–54.

    Article  CAS  Google Scholar 

  4. Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D. Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH). J Phys Chem C. 2012;116:18230–5.

    Article  CAS  Google Scholar 

  5. Li C, Li X, Duan X, Li G, Wang J. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres. J Colloid Interface Sci. 2014;436:70–6.

    Article  CAS  Google Scholar 

  6. Duce C, Vecchio Ciprioti S, Ghezzi L, Ierardi V, Tine MR. Thermal behavior study of pristine and modified halloysite nanotubes. J Therm Anal Calorim. 2015;121:1011–9.

    Article  CAS  Google Scholar 

  7. Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L. Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer. 2014;55:6519–28.

    Article  CAS  Google Scholar 

  8. Khunova V, Kelnar I, Kristof J, Dybal J, Kratochvíl J, Kapralkova L. The effect of urea and urea-modified halloysite on performance of PCL. J Therm Anal Calorim. 2015;120:1283–91.

    Article  CAS  Google Scholar 

  9. Zhang Y, Xie Y, Tang A, Zhou Y, Ouyang J, Yang H. Precious-metal nanoparticles anchored onto functionalized halloysite nanotubes. Ind Eng Chem Res. 2014;53:5507–14.

    Article  CAS  Google Scholar 

  10. Fu X, Ding Z, Zhang X, Weng W, Xu Y, Liao J, Xie Z. Preparation of halloysite nanotube-supported gold nanocomposite for solvent-free oxidation of benzyl alcohol. Nanoscale Res Lett. 2014;9:282–9.

    Article  Google Scholar 

  11. Yu L, Zhang Y, Zhang B, Liu J. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci Rep. 2014;4:4551–5.

    Article  Google Scholar 

  12. Kim CS, Randow C, Sano T. Hybrid and hierarchical composite materials. Berlin: Springer; 2015.

    Book  Google Scholar 

  13. Li B, Li R. Preparation and property of ultrahigh molecular weight polyethylene- halloysite nanotube fiber. Fiber Polym. 2016;17:1043–7.

    Article  CAS  Google Scholar 

  14. Manchini LH, Espozito L. Nanocomposites: preparation, properties, and performance. New York: Nova Science Publisher; 2008.

    Google Scholar 

  15. Cheraghi Bidsorkhi H, Adelnia H, Heidar Pour R, Soheilmoghaddam M. Preparation and characterization of ethylene-vinyl acetate/halloysite nanotube nanocomposites. J Mater Sci. 2015;50:3237–45.

    Article  Google Scholar 

  16. Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces. 2013;5:10559–64.

    Article  CAS  Google Scholar 

  17. Gorrasi G, Senatore V, Vigliotta G, Belviso S, Pucciariello R. PET-halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties. Eur Polym J. 2014;61:145–56.

    Article  CAS  Google Scholar 

  18. Zhang J, Zhang Y, Chen Y, Du L, Zhang B, Zhang H, Liu J, Wang K. Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles. Ind Eng Chem Res. 2012;51:3081–90.

    Article  CAS  Google Scholar 

  19. Du M, Guo B, Jia D. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.

    Article  CAS  Google Scholar 

  20. Kang H, Liu X, Zhang S, Li J. Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Adv. 2017;7:24140–8.

    Article  Google Scholar 

  21. Szpilska K, Czaja K, Kudata S. Halloysite nanotubes as polyolefin fillers. Polimery. 2015;60:357–422.

    Article  Google Scholar 

  22. Asghari S, Ramezani S, Ahmadipour M, Hatami M. Fabrication and morphological characterizations of immobilized silver-loaded titanium dioxide nanoparticles/polyvinyl alcohol nanocomposites. Des Monomers Polym. 2013;16:349–57.

    Article  CAS  Google Scholar 

  23. Ashgari S, Hatami M, Ahmadipour M. Preparation and investigation of novel PVA/silica nanocomposites with potential application in NLO. Polym Plast Technol Eng. 2015;54:192–201.

    Article  Google Scholar 

  24. Yazdani S, Hatami M, Vahdat SM. The chemistry concerned with the sonochemical-assisted synthesis of CeO2/poly(amic acid) nanocomposites. Turk J Chem. 2014;38:388–401.

    Article  CAS  Google Scholar 

  25. Hatami M, Azarkar BF, Qandalee M, Hasanabadi H. Morphological investigation of synthetic poly(amic acid)/cerium oxide nanostructures. Polym Eng Sci. 2015;55:2339–48.

    Article  CAS  Google Scholar 

  26. Ahmadipour M, Hatami M, Asghari S, Mohseni M. Preparation and characterization of novel PVA bionanocomposites based on 4H-pyran loaded on silica nanoparticles: morphological aspects and antibacterial activity. Int J Polym Mater Polym Biomater. 2017;66:726–37.

    Article  CAS  Google Scholar 

  27. Hatami M, Yazdan Panah M. Ultrasonic assisted synthesis of nanocomposite materials based on resole resin and surface modified nano CeO2: chemical and morphological aspects. Ultrason Sonochem. 2017;39:160–73.

    Article  CAS  Google Scholar 

  28. Hatami M, Ahmadipour M, Asghari S. Heterocyclic grafting functionalization of silica nanoparticles: fabrication, morphological investigation and application for PVA nanocomposites. J Inorg Organomet Polym. 2017;27:1072–83.

    Article  CAS  Google Scholar 

  29. Hatami M. Production and morphological characterization of low resistance polyimide/silver nanowire nanocomposites: potential application in nanoconductive adhesives. J Mater Sci Mater Electron. 2017;28:3897–908.

    Article  CAS  Google Scholar 

  30. Van Krevelen DW, Hoftyzer PJ. Properties of polymers. 3rd ed. Amsterdam: Elsevier; 1976.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research Affairs Division University of Bonab, Bonab, for partial financial support. Further financial support from Iran Nanotechnology Initiative Council (INIC) is appreciatively acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hatami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhanian, S., Hatami, M. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim 130, 2069–2078 (2017). https://doi.org/10.1007/s10973-017-6630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6630-8

Keywords

Navigation