Skip to main content
Log in

Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers

An experimental approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A comprehensive experimental investigation is intended to survey consequence of nanofluid on performance of sundry parallel flow heat exchangers with the same heat transfer surface area. An experimental setup including one double-pipe heat exchanger, two shell-and-tube heat exchangers with different tube passes, and one plate heat exchanger is designed and built to carry out the experiments. The experiments are performed under turbulent flow conditions using distilled water and Al2O3/water nanofluid with 0.2, 0.5, and 1% particle volume concentrations. Based on the results from this study, the double-pipe heat exchanger reflected the best outcomes in the heat transfer coefficient with a maximum enhancement of 26%, while only a 7% increment in the heat transfer coefficient is observed for the plate heat exchanger. On the other hand, minimum punishment for pressure drop of the working fluids due to adding the nanoparticles is observed in the plate heat exchanger at 1% volume concentration with a maximum value of 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A :

Heat transfer surface area, m²

b :

Corrugation depth, m

B :

Plate width, m

C p :

Specific heat capacity, J kg−1 K−1

d bf :

Equivalent diameter of a molecule of the base fluid, m

d p :

Average diameter of nanoparticles, nm

D :

Diameter of tube, m

D 1 :

Inside diameter of annulus, m

D 2 :

Outside diameter of annulus, m

f :

Friction coefficient

F :

Correction factor

h :

Convective heat transfer coefficient, W m² K−1

K :

Thermal conductivity, W m−1 K−1

K B :

Boltzmann’s constant, J K−1

L :

Length of tube, m

m :

Mass flow rate, kg s−1

M :

Molecular weight of the base fluid, kg kmol−1

n :

Number of passes per stream

N :

Avogadro number

Nu :

Nusselt number

Δp :

Pressure drop, kPa

Pr :

Prandtl number

Q :

Heat transfer rate, W

Re :

Reynolds number

Re p :

Nanoparticle Reynolds number

t :

Plate thickness, m

T :

Temperature, K

T 0 :

Temperature at the inlet, K

T lm :

Logarithmic mean temperature difference, K

u B :

Brownian velocity of the nanoparticle, m s−1

U :

Overall heat transfer coefficient, W m² K−1

U S :

Superficial velocity inside the conduit, m s−1

V :

Volume flow rate, m3 s−1

β :

Chevron angle, (°)

µ :

Dynamic viscosity, kg m−1 s−1

ρ :

Density, kg m³

ρ f0 :

Mass density of the base fluid at temperature 293 K, kg m³

φ :

Nanoparticle volumetric fraction

ave:

Average

bf:

Base fluid

c:

Cold

ch:

Channel

f:

Fluid

fr:

Freezing

h:

Hot

H:

Hydraulic

i:

Inside

m:

Mean

nf:

Nanofluid

o:

Outside

p:

Nanoparticle

ss:

Stainless steel

References

  1. Kakac S, Liu H, Pramuanjaroenkij A. Heat exchangers: selection, rating, and thermal design. Boca Raton: CRC Press; 2012.

    Book  Google Scholar 

  2. Bergles A. Some perspectives on enhanced heat transfer-second-generation heat transfer technology. J Heat Transfer. 1988;110(4):1082–96.

    Article  CAS  Google Scholar 

  3. Bergles A. Techniques to enhance heat transfer. Handb Heat Transf. 1998;3:11.1–11.76.

    Google Scholar 

  4. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States) 1995.

  5. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13):3187–96.

    Article  Google Scholar 

  6. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–8.

    Article  CAS  Google Scholar 

  7. Williams W, Buongiorno J, Hu L-W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf. 2008;130(4):042412.

    Article  Google Scholar 

  8. Farajollahi B, Etemad SG, Hojjat M. Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf. 2010;53(1):12–7.

    Article  CAS  Google Scholar 

  9. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO 2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67.

    Article  CAS  Google Scholar 

  10. Pantzali M, Mouza A, Paras S. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci. 2009;64(14):3290–300.

    Article  CAS  Google Scholar 

  11. Maré T, Halelfadl S, Sow O, Estellé P, Duret S, Bazantay F. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Exp Thermal Fluid Sci. 2011;35(8):1535–43.

    Article  Google Scholar 

  12. Pandey SD, Nema V. Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp Thermal Fluid Sci. 2012;38:248–56.

    Article  CAS  Google Scholar 

  13. Tiwari AK, Ghosh P, Sarkar J. Performance comparison of the plate heat exchanger using different nanofluids. Exp Thermal Fluid Sci. 2013;49:141–51.

    Article  CAS  Google Scholar 

  14. Garoosi F, Hoseininejad F, Rashidi MM. Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids. Energy. 2016;109:664–78.

    Article  CAS  Google Scholar 

  15. Reddy MCS, Rao VV. Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO 2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf. 2014;50:68–76.

    Article  Google Scholar 

  16. Ray DR, Das DK, Vajjha RS. Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger. Int J Heat Mass Transf. 2014;71:732–46.

    Article  CAS  Google Scholar 

  17. Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Latibari ST, Mehrali M, et al. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J Nanopart Res. 2015;17(6):267.

    Article  Google Scholar 

  18. Garoosi F, Hoseininejad F, Rashidi MM. Numerical study of heat transfer performance of nanofluids in a heat exchanger. Appl Therm Eng. 2016;105:436–55.

    Article  Google Scholar 

  19. Sheikholeslami M, Ganji D, Rashidi MM. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magn Mater. 2016;416:164–73.

    Article  CAS  Google Scholar 

  20. Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan W-M. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122(2):863–84.

    Article  CAS  Google Scholar 

  21. Doshmanziari FI, Zohir A, Kharvani HR, Jalali-Vahid D, Kadivar M. Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow. Heat Mass Transf. 2016;52(7):1305–20.

    Article  CAS  Google Scholar 

  22. Laein RP, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27(2):312–22.

    Article  Google Scholar 

  23. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  24. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim 2018. https://doi.org/10.1007/s10973-018-7070.

    Article  Google Scholar 

  25. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim 2018;132(2):1189–200.

    Article  CAS  Google Scholar 

  26. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

  27. Arani AA, Amani J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp Thermal Fluid Sci. 2013;44:520–33.

    Article  Google Scholar 

  28. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  29. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  30. Palm SJ, Roy G, Nguyen CT. Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties. Appl Therm Eng. 2006;26(17–18):2209–18.

    Article  CAS  Google Scholar 

  31. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3):240–50.

    Article  Google Scholar 

  32. Heyhat M, Kowsary F, Rashidi A, Momenpour M, Amrollahi A. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Thermal Fluid Sci. 2013;44:483–9.

    Article  CAS  Google Scholar 

  33. Sa Kline, McClintock FA. Describing uncertainties in single-sample experiments. ASME Mech Eng. 1953;75:3–8.

    Google Scholar 

  34. Incropera FP, Dewitt DP. Introduction to heat transfer. New York: Wiley; 1996.

    Google Scholar 

  35. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16(2):359–68.

    Google Scholar 

  36. Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Druck von BG Teubner; 1907.

  37. Naphon P, Nuchjapo M, Kurujareon J. Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib. Energy Convers Manag. 2006;47(18):3031–44.

    Article  CAS  Google Scholar 

  38. Huang D, Wu Z, Sunden B. Pressure drop and convective heat transfer of Al 2 O 3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf. 2015;89:620–6.

    Article  CAS  Google Scholar 

  39. Vlasogiannis P, Karagiannis G, Argyropoulos P, Bontozoglou V. Air–water two-phase flow and heat transfer in a plate heat exchanger. Int J Multiph Flow. 2002;28(5):757–72.

    Article  CAS  Google Scholar 

  40. Chen H, Yang W, He Y, Ding Y, Zhang L, Tan C, et al. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 2008;183(1):63–72.

    Article  CAS  Google Scholar 

  41. Kumaresan V, Velraj R, Das SK. Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int J Refrig. 2012;35(8):2287–96.

    Article  CAS  Google Scholar 

  42. Darzi AR, Farhadi M, Sedighi K. Heat transfer and flow characteristics of Al 2 O 3–water nanofluid in a double tube heat exchanger. Int Commun Heat Mass Transf. 2013;47:105–12.

    Article  CAS  Google Scholar 

  43. Lotfi R, Rashidi AM, Amrollahi A. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;39(1):108–11.

    Article  CAS  Google Scholar 

  44. Godson L, Deepak K, Enoch C, Jefferson B, Raja B. Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civil Mech Eng. 2014;14(3):489–96.

    Article  Google Scholar 

  45. Shahrul I, Mahbubul I, Saidur R, Khaleduzzaman S, Sabri M, Rahman M. Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. Numer Heat Transf Part A Appl. 2014;65(7):699–713.

    Article  CAS  Google Scholar 

  46. Kwon Y, Kim D, Li C, Lee J, Hong D, Lee J, et al. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger. J Nanosci Nanotechnol. 2011;11(7):5769–74.

    Article  CAS  Google Scholar 

  47. Kabeel A, El Maaty TA, El Samadony Y. The effect of using nano-particles on corrugated plate heat exchanger performance. Appl Therm Eng. 2013;52(1):221–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Jam Polypropylene Company, Islamic Azad University of Nour Branch and the Iran Nanotechnology Initiative Council (INIC) for their financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Mansoury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoury, D., Ilami Doshmanziari, F., Rezaie, S. et al. Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers. J Therm Anal Calorim 135, 625–643 (2019). https://doi.org/10.1007/s10973-018-7286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7286-8

Keywords

Navigation