Skip to main content
Log in

Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase transformations in the Cu–9Al–10Mn–3Gd alloy were studied using differential scanning calorimetry, X-ray diffraction patterns, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field and temperature. The results showed that the effects produced by the Mn atoms are dominant on those attributed to the Gd atoms in the annealed Cu–9Al–10Mn–3Gd alloy. For quaternary alloy the results also indicated that the Gd stabilizes a fraction of the paramagnetic β3 phase at lower temperatures and suppresses its paramagnetic–ferromagnetic ordering; in addition, it increases the Curie temperature of the Cu–9Al–10Mn alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murray JL. The aluminium-copper system. Inter Metal Rev. 1985;30:211–33.

    CAS  Google Scholar 

  2. Klinger L, Bréchet Y, Purdy G. On the kinetics of interface-diffusion-controlled peritectoid reactions. Acta Mater. 1998;46:2617–21.

    Article  CAS  Google Scholar 

  3. Obradó E, Frontera C, Mañosa L, Planes A. Order-disorder transitions of Cu–Al–Mn shape-memory alloys. Phys Rev B. 1998;58:14245.

    Article  Google Scholar 

  4. Silva RAG, Machado ES, Adorno AT, Magdalena AG, Carvalho TM. Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Therm Anal Calorim. 2012;109:927–31.

    Article  CAS  Google Scholar 

  5. Kök M, Ata S, Yakıncı ZD, Aydogdu Y. Examination of phase changes in the CuAl high-temperature shape memory alloy with the addition of a third element. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7176-0.

    Article  Google Scholar 

  6. Lohan NM, Pricop B, Burlacu L, Bujoreanu L. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys. J Therm Anal Calorim. 2018;131:215–24.

    Article  CAS  Google Scholar 

  7. Velazquez D, Romero R. Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy. J Therm Anal Calorim. 2017;130:2007–13.

    Article  CAS  Google Scholar 

  8. Bouchard M, Thomas G. Phase transitions and modulated structures in ordered (Cu–Mn)3Al alloys. Acta Metal. 1975;23:1485–500.

    Article  CAS  Google Scholar 

  9. Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K. Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 2009;57:5748–58.

    Article  CAS  Google Scholar 

  10. Kainuma R, Takahashi S, Ishida K. Thermoelastic martensite and shape memory effect in ductile Cu–AI–Mn alloys. Metal Mater Trans A. 1996;27A:2187–95.

    Article  CAS  Google Scholar 

  11. Mielczarek A, Kopp N, Riehemann W. Ageing effects after heat treatment in Cu–Al–Mn shape memory alloys. Mater Sci Eng A. 2009;182:521–2.

    Google Scholar 

  12. Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K. Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 2009;57:5759–70.

    Article  CAS  Google Scholar 

  13. Yiping L, Murthy A, Hadjipanayis GC. Giant magnetoresistance in Cu–Mn–Al. Phys Rev B. 1996;54:3033.

    Article  CAS  Google Scholar 

  14. Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloys Compd. 2009;469:156–63.

    Article  CAS  Google Scholar 

  15. Silva RAG, Paganotti A, Gama S, Adorno AT, Carvalho TM, Santos CMA. Investigation of thermal, mechanical and magnetic behaviors of the Cu–11%Al alloy with Ag and Mn additions. Mater Charact. 2013;75:194–9.

    Article  CAS  Google Scholar 

  16. Chen J, Li Z, Zhao YY. A high-working-temperature CuAlMnZr shape memory alloy. J Alloys Compd. 2009;480:481–4.

    Article  CAS  Google Scholar 

  17. Canbay CA, Genc ZK. Thermal and structural characterization of Cu–Al–Mn–X (Ti, Ni) shape memory alloys. Appl Phys A. 2014;115:371–7.

    Article  CAS  Google Scholar 

  18. Canbay CA, Ozgen S. Thermal and microstructural investigation of Cu–Al–Mn–Mg shape memory alloys. Appl Phys A. 2014;117:767–71.

    Article  CAS  Google Scholar 

  19. Benford SM, Brown GV. T–S diagram for gadolinium near the Curie temperature. J Appl Phys. 1981;52:2110–2.

    Article  CAS  Google Scholar 

  20. Balzar D, Popa NC. Analyzing microstructure by Rietveld Refinement. Rigaku J. 2005;22:16–25.

    CAS  Google Scholar 

  21. Coelho AA, Evans J, Evans I, Kern A, Parsons S. The TOPAS symbolic computation system. Powder Diffr. 2011;26(S1):22–5.

    Article  Google Scholar 

  22. Toby BH. R factors in Rietveld analysis: how good is good enough? Powder Diffr. 2006;21:67–70.

    Article  CAS  Google Scholar 

  23. Santos CMA, Adorno AT, Paganotti A, Silva CCS, Oliveira AB, Silva RAG. Phase stability in the Cu–9wt%Al–10wt%Mn–3wt%Ag alloy. J Phys Chem Solids. 2017;104:145–51.

    Article  CAS  Google Scholar 

  24. Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloys Compds. 1998;266:191–200.

    Article  CAS  Google Scholar 

  25. Marcos JS, Fernández JR, Chevalier B, Bobet J-L, Etourneau J. Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2. J Magn Magn Mater. 2004;272–276:579–80.

    Article  Google Scholar 

  26. Adorno AT, Guerreiro MR, Benedetti AV. Thermal behavior of CuAl alloys near the α-CuAl solubility limit. J Thermal Anal Calorim. 2001;65:221–9.

    Article  CAS  Google Scholar 

  27. Adorno AT, Carvalho TM, Magdalena AG, dos Santos CMA, Silva RAG. Activation energy for the reverse eutectoid reaction in hypo-eutectoid Cu–Al alloys. Therm Acta. 2012;531:35–41.

    Article  CAS  Google Scholar 

  28. Oliveira AB, Silva RAG. Thermomagnetic behavior of an as-quenched Cu–Al–Mn–Gd alloy. Mater Chem Phys. 2018;209:112–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to FAPESP (2015/18996-0) and CNPq (409714/2016-0) for financial support and LNNano for technical support during electron microscopy work (FEI-Inspect F50 FEG High-Resolution SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. G. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazolin, G.F., Silva, C.C.S., Silva, L.S. et al. Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy. J Therm Anal Calorim 134, 1405–1412 (2018). https://doi.org/10.1007/s10973-018-7586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7586-z

Keywords

Navigation