Skip to main content
Log in

Numerical investigation of turbulent heat transfer enhancement using combined propeller-type turbulator and nanofluid in a circular tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer enhancement is an important issue because of environmental effects and also cost reduction in any thermal installation. A combined propeller-type turbulator and Al2O3 nanofluid are considered for heat transfer enhancement in a horizontal circular tube. Three-dimensional governing equations using the two-phase mixture model with SST kε turbulent model are numerically solved to predict the behavior of different thermo-fluid parameters in a horizontal circular tube. In addition to studying the effects of these, both means on the heat transfer enhancement, an important discussion on their simultaneous effects are also presented. The effects of turbulator on the generation of swirl flow and also on the turbulent kinetic energy are shown and discussed for different nanoparticle volume fractions and different nanoparticle mean diameters. On one hand, the effect of inserting a turbulator on the thermal performance significantly dominates the effect of using a nanofluid. For instance, at the Z/D = 13.5, using combined nanofluid and turbulator the heat transfer coefficient 2.68 times augments while using only a turbulator it is 2.53 times enhanced. On the other hand, turbulator generates a radial gradient on the momentum forces. The latter significantly deteriorates the uniformity of the nanoparticles concentration. A higher nanoparticle concentration at the near-wall region where the sedimentation problem is taken placed is seen. Thus, it is recommended that nanofluid is not a suitable choice for simultaneous consideration with a propeller-type turbulator in such an application particularly when considering its physicochemical stability drawback. However, further experimental investigations must be carried out to verify such a conclusion and recommendation. It should be mentioned that agglomeration and sedimentation of nanoparticles on the wall surface have not been considered on the modeling of nanofluid physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Acceleration

C f :

Skin friction coefficient (= τw/0.5 ρ V2in)

C p :

Specific heat (J kg−1 K−1)

D, d :

Diameter (m)

g :

Acceleration of gravity (ms−2)

h :

Convective heat transfer coefficient (Wm2 K−1), Enthalpy (J kg−1)

k :

Turbulent kinetic energy (m2 s2)

Nu :

Nusselt number (= hD/λ)

Pr :

Pandtl number (= μCp/λ)

R, r :

Tube radius (m)

Re :

Reynolds number (= VD/υ)

S :

Swirl number

T :

Temperature (K)

V :

Velocity (ms−1)

Z :

Axial coordinate (m)

α :

Diffusion coefficient (m2 s−1)

ϕ :

Volume fraction

δ :

Boundary layer thickness (nm)

ξ :

Vorticity magnitude (=  × V)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (Nsm−2)

υ :

Kinematic viscosity (m2 s−1)

θ :

Vane angle of turbulator

τ :

Shear stress (Nm−2)

λ :

Thermal conductivity (Wm−1 K−1)

ω :

Turbulent kinetic energy dissipation

ax:

Axial

c:

Central

f:

Primary phase

k:

The kth phase

in:

Inlet

m:

Mixture

p:

Particle, secondary phase

t:

Turbulent

w:

Wall

References

  1. Bergles AE. Techniques to Augment Heat Transfer. Handbook of Heat Transfer 74-17085 05-33. New York: McGraw-Hill; 1973.

    Google Scholar 

  2. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew. Sustain. Energy Rev. 2013;19:64–81.

    Article  Google Scholar 

  3. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew. Sustain. Energy Rev. 2015;49:444–69.

    Article  Google Scholar 

  4. Bhattacharyya S, Saha S, Saha SK. Laminar flow heat transfer enhancement in a circular tube having integral transverse rib roughness and fitted with centre-cleared twisted-tape. Exp. Therm. Fluid Sci. 2013;44:727–35.

    Article  Google Scholar 

  5. Saha SK, Bhattacharyya S, Pal PK. Thermohydraulics of laminar flow of viscous oil through a circular tube having integral axial rib roughness and fitted with center-cleared twisted-tape. Exp. Therm. Fluid Sci. 2012;41:121–9.

    Article  Google Scholar 

  6. Bhattacharyya S, Saha SK. Thermohydraulics of laminar flow through a circular tube having integral helical rib roughness and fitted with centre-cleared twisted-tape. Exp. Therm. Fluid Sci. 2012;42:154–62.

    Article  Google Scholar 

  7. Bali T. Modelling of heat transfer and fluid flow for decaying swirl flow in a circular pipe. Int. Commun. Heat Mass Transf. 1998;25:349–58.

    Article  CAS  Google Scholar 

  8. Durmuş A, Kurbaş I, Gulçimen F, Turgut E. Investigation of the effect of co-axis free rotating propeller-type turbulators on the performance of heat exchanger. Int. Commun. Heat Mass Transf. 2004;31:133–42.

    Article  Google Scholar 

  9. Kurtbaş I, Durmuş A, Eren H, Turgut E. Effect of propeller type swirl generators on the entropy generation and efficiency of heat exchangers. Int. J. Therm. Sci. 2007;46:300–7.

    Article  Google Scholar 

  10. Saraç BA, Bali T. An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator. Exp. Therm. Fluid Sci. 2007;32:158–65.

    Article  Google Scholar 

  11. Bali T, Saraç B. Exergy analysis of heat transfer in a turbulent pipe flow by a decaying swirl generator. Int. J. Exergy. 2008;5:64–77.

    Article  Google Scholar 

  12. Eiamsa-ard S, Rattanawong S, Promvonge P. Turbulent convection in round tube equipped with propeller type swirl generators. Int. Commun. Heat Mass Transf. 2009;36:357–64.

    Article  CAS  Google Scholar 

  13. Khalil A, Zohir A, Farid A. Heat transfer characteristics and friction of turbulent swirling air flow through abrupt expansion. Am. J. Sci. Ind. Res. 2010;1:364–74.

    Google Scholar 

  14. Ahmadvand M, Najafi AF, Shahidinejad S. An experimental study and CFD analysis towards heat transfer and fluid flow characteristics of decaying swirl pipe flow generated by axial vanes. Meccanica. 2010;45:111–29.

    Article  Google Scholar 

  15. Yang CS, Jeng DZ, Yang YJ, Chen R, Gau C. Experimental study of pre-swirl flow effect on the heat transfer process in the entry region of a convergent pipe. Exp. Therm. Fluid Sci. 2011;35:73–81.

    Article  Google Scholar 

  16. Duangthongsuk W, Wongwises S. An experimental investigation of the heat transfer and pressure drop characteristics of a circular tube fitted with rotating turbine-type swirl generators. Exp. Therm. Fluid Sci. 2013;45:8–15.

    Article  CAS  Google Scholar 

  17. Bali T, Saraç BA. Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators. Int. Commun. Heat Mass Transf. 2014;53:174–9.

    Article  Google Scholar 

  18. Rocha AD, Bannwart AC, Ganzarolli MM. Numerical and experimental study of an axially induced swirling pipe flow. Int. J. Heat Fluid Flow. 2015;53:81–90.

    Article  Google Scholar 

  19. Chai L, Tassou SA. A review of air side heat transfer augmentation with vortex generators on heat transfer surface. Energies. 2018;11:2737.

    Article  Google Scholar 

  20. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expos 1995;66:99–105.

    Google Scholar 

  21. Osman S, Sharifpur M, Meyer JP. Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide-water nanofluids in a rectangular channel. Int. J. Heat Mass Transf. 2019;133:895–902.

    Article  CAS  Google Scholar 

  22. Sharifpur M, Solomon AB, Ottermann TO, Meyer JP. Optimum concentration of nanofluids for heat transfer enhancement under cavity flow natural convection with TiO2–Water. Int. Commun. Heat Mass Transf. 2018;98:297–303.

    Article  CAS  Google Scholar 

  23. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int. J. Heat Fluid Flow. 2007;28:211–9.

    Article  CAS  Google Scholar 

  24. Onyiriuka EJ, Obanor AI, Mahdavi M, Ewim DRE. Evaluation of single-phase, discrete, mixture and combined model of discrete and mixture phases in predicting nanofluid heat transfer characteristics for laminar and turbulent flow regimes. Adv. Powder Technol. 2018;29:2644–57.

    Article  Google Scholar 

  25. Aybar HŞ, Sharifpur M, Azizian MR, Mehrabi M, Meyer JP. A review of thermal conductivity models for nanofluids. Heat Transf. Eng. 2015;36:1085–110.

    Article  CAS  Google Scholar 

  26. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J. Phys. D Appl. Phys. 2009;42:55501.

    Article  Google Scholar 

  27. Mahdavi M, Sharifpur M, Meyer JP. Discrete modelling of nanoparticles in mixed convection flows. Powder Technol. 2018;338:243–52.

    Article  CAS  Google Scholar 

  28. Mahdavi M, Garbadeen I, Sharifpur M, Ahmadi MH, Meyer JP. Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles. J. Therm. Anal. Calorim. 2019;135:1563–75.

    Article  CAS  Google Scholar 

  29. Farzaneh H, Behzadmehr A, Yaghoubi M, Samimi A, Sarvari SMH. Stability of nanofluids: molecular dynamic approach and experimental study. Energy Convers. Manag. 2016;111:1–14.

    Article  CAS  Google Scholar 

  30. Safikhani H, Hajian E, Mohammadi R. Numerical simulation of nanofluid flow over diamond-shaped elements in tandem in laminar and turbulent flow. Transp. Phenom. Nano Micro Scales. 2017;5:102–10.

    Google Scholar 

  31. Eiamsa-ard S, Wongcharee K. Experimental study of TiO2–water nanofluid flow in corrugated tubes mounted with semi-circular wing tapes. Heat Transf. Eng. 2018;39:1–14.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int. J. Heat Mass Transf. 2018;124:980–9.

    Article  CAS  Google Scholar 

  33. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement Gaps and challenges. J. Therm. Anal. Calorim. 2019;135:437–60.

    Article  CAS  Google Scholar 

  34. Manninen M, Taivassalo V, Kallio S. On the Mixture Model for Multiphase Flow. New York: VTT Publications; 1996. p. 1–67.

    Google Scholar 

  35. Schiller L, Naumann Z. A drag coefficient correlation. Vdi Zeitung. 1935;77:51.

    Google Scholar 

  36. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32:1598–605.

    Article  Google Scholar 

  37. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  38. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 2005;87:153107-1–3.

    Article  Google Scholar 

  39. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976;16:359–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Behzadmehr.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoozadeh, A., Behzadmehr, A. & Payan, S. Numerical investigation of turbulent heat transfer enhancement using combined propeller-type turbulator and nanofluid in a circular tube. J Therm Anal Calorim 140, 1029–1044 (2020). https://doi.org/10.1007/s10973-019-08578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08578-x

Keywords

Navigation