Skip to main content
Log in

Microstructural and thermal response evolution of metallic form-stable phase change materials produced from ball-milled powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) can store and release the latent heat associated with a phase transition, so they can be applied in thermal energy management and storage systems. Among them, form-stable (FS) PCMs can consist of two immiscible phases: an active phase, which undergoes the solid–liquid transition, and a matrix, which provides the structural properties and prevents leakage of the active phase when it is liquid. This experimental study focused on the characterization of a metallic FS-PCMs based on an Al–Sn alloy, obtained by powder metallurgy from ball-milled powders, compacted at room temperature and sintered at 200, 250 and 500 °C. The main properties that characterize PCMs are the temperature range over which transition occurs and the associated enthalpy, i.e. the stored energy. Differential scanning calorimetry (DSC) is one of the more suitable characterization techniques to evaluate these properties and so the thermal response of PCMs. To check thermal response and its stability, DSC tests including several thermal cycles were conducted. DSC analyses were performed also before and after several thermal cycles simulating possible operative conditions. Moreover, microstructural analysis, through scanning electron microscopy and X-ray diffraction, allowed to relate the thermal response variations to microstructural and mechanical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123. https://doi.org/10.1016/J.PMATSCI.2014.03.005.

    Article  CAS  Google Scholar 

  2. Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev. 2010;14:955–70. https://doi.org/10.1016/J.RSER.2009.11.011.

    Article  CAS  Google Scholar 

  3. Kuta M, Matuszewska D, Wójcik TM. The role of phase change materials for the sustainable energy. E3S Web Conf. 2016;10:68. https://doi.org/10.1051/e3sconf/20161000068.

    Article  CAS  Google Scholar 

  4. Kuta M, Wójcik TM. Phase change materials in energy sector—applications and material requirements. EPJ Web Conf. 2015;92:2043. https://doi.org/10.1051/epjconf/20159202043.

    Article  Google Scholar 

  5. Sugo H, Kisi E, Cuskelly D. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications. Appl Therm Eng. 2013;51:1345–50. https://doi.org/10.1016/J.APPLTHERMALENG.2012.11.029.

    Article  CAS  Google Scholar 

  6. Zhou C, Wu S. Medium- and high-temperature latent heat thermal energy storage: material database, system review, and corrosivity assessment. Int J Energy Res. 2019;43:621–61. https://doi.org/10.1002/er.4216.

    Article  CAS  Google Scholar 

  7. Wei G, Wang G, Xu C, Ju X, Xing L, Du X, Yang Y. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2018;81:1771–86. https://doi.org/10.1016/J.RSER.2017.05.271.

    Article  CAS  Google Scholar 

  8. Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yılbaş BS, Sahin AZ. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:1072–89. https://doi.org/10.1016/J.RSER.2016.12.012.

    Article  CAS  Google Scholar 

  9. Singh SP, Deb-Barman BK, Kumar P. Cu–Bi alloys with high volume fraction of Bi: a material potentially suitable for thermal surge protection and energy storage. Mater Sci Eng A. 2016;677:140–52. https://doi.org/10.1016/j.msea.2016.09.041.

    Article  CAS  Google Scholar 

  10. Reed S, Sugo H, Kisi E. High temperature thermal storage materials with high energy density and conductivity. Sol Energy. 2018;163:307–14. https://doi.org/10.1016/J.SOLENER.2018.02.005.

    Article  CAS  Google Scholar 

  11. Fiedler T, Rawson AJ, Sugo H, Kisi E. Thermal capacitors made from miscibility gap alloys (MGAs). WIT Trans Ecol Environ. 2014. https://doi.org/10.2495/esus140411.

    Article  Google Scholar 

  12. Liu X, Zeng MQ, Ma Y, Zhu M. Promoting the high load-carrying capability of Al–20 wt% Sn bearing alloys through creating nanocomposite structure by mechanical alloying. Wear. 2012;294–295:387–94. https://doi.org/10.1016/j.wear.2012.07.021.

    Article  CAS  Google Scholar 

  13. Gariboldi E, Perrin M. Metallic composites as form-stable phase change alloys. THERMEC 2018 Trans Tech Publ. 2019. https://doi.org/10.4028/www.scientific.net/MSF.941.1966.

    Article  Google Scholar 

  14. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. https://doi.org/10.1016/S0079-6425(99)00010-9.

    Article  CAS  Google Scholar 

  15. Confalonieri C, Li Z, Gariboldi E. Metallic form-stable phase change materials for thermal energy storage and management: general features and effect of manufacturing process on thermal response and stability. La Metall Ital Int J Ital Assoc Metall. 2019;7(8):12–20.

    Google Scholar 

  16. Toda A. Heating rate dependence of melting peak temperature examined by DSC of heat flux type. J Therm Anal Calorim. 2016;123:1795–808. https://doi.org/10.1007/s10973-015-4603-3.

    Article  CAS  Google Scholar 

  17. Liu X, Zeng MQ, Ma Y, Zhu M. Melting behavior and the correlation of Sn distribution on hardness in a nanostructured Al–Sn alloy. Mater Sci Eng A. 2009;506:1–7. https://doi.org/10.1016/J.MSEA.2008.12.054.

    Article  Google Scholar 

  18. Exner HE, Arzt E. Sintering processes. In: Cahn RW, Haasen P, editors. Physics of metals. 4th ed. Oxford: North-Holland; 1996. p. 2627–62. https://doi.org/10.1016/B978-044489875-3/50036-3.

    Chapter  Google Scholar 

  19. Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A. Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012;40:D420–7. https://doi.org/10.1093/nar/gkr900.

    Article  CAS  PubMed  Google Scholar 

  20. Wyckoff RWG. Crystal structure, vol. 1. 2nd ed. New York: Interscience Publishers; 1963. p. 7–237.

    Google Scholar 

  21. Lutterotti L, Maud, (n.d.). http://maud.radiographema.eu.

  22. Hemminger WF, Sarge SM. The baseline construction and its influence on the measurement of heat with differential scanning calorimeters. J Therm Anal. 1991;37:1455–77. https://doi.org/10.1007/BF01913481.

    Article  CAS  Google Scholar 

  23. Vanden-Poel G, Mathot VBF. High-speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal lag. Thermochim Acta. 2006;446:41–54. https://doi.org/10.1016/j.tca.2006.02.022.

    Article  CAS  Google Scholar 

  24. Steurer W. Crystal structures of the elements. Encycl Mater Sci Technol. 2001. https://doi.org/10.1016/b0-08-043152-6/00344-2.

    Article  Google Scholar 

  25. Yu C, Liu J, Lu H, Chen J. Ab initio calculation of the properties and pressure induced transition of Sn. Solid State Commun. 2006;140:538–43. https://doi.org/10.1016/j.ssc.2006.09.026.

    Article  CAS  Google Scholar 

  26. Gorokh AV, Danilenko IA, Primisler VB. Suppression of anomalous allotropic transformations at high pressures. Inorg Mater. 2003;39:183–5. https://doi.org/10.1023/A:1022154931469.

    Article  CAS  Google Scholar 

  27. Navarrete N, Gimeno-Furio A, Mondragon R, Hernandez L, Cabedo L, Cordoncillo E, Julia JE. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature. Sci Rep. 2017;7:17580. https://doi.org/10.1038/s41598-017-17841-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shackelford W, Alexander JF, editors. CRC materials science and engineering handbook. 3rd ed. Boca Raton: CRC Press; 2001. https://doi.org/10.1201/9781420038408.

    Book  Google Scholar 

  29. Kim WT, Cantor B. Solidification of tin droplets embedded in an aluminium matrix. J Mater Sci. 1991;26:2868–78. https://doi.org/10.1007/BF01124815.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aldo Tommaso Grimaldi, for samples production and initial characterization, and Enrico Bassani, for his help in XRD tests. This work was supported by the Italian Ministry for Education, University and Research through the Project Department of Excellence LIS4.0 (Integrated Laboratory for Lightweight e Smart Structures).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Confalonieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Confalonieri, C., Bassani, P. & Gariboldi, E. Microstructural and thermal response evolution of metallic form-stable phase change materials produced from ball-milled powders. J Therm Anal Calorim 142, 85–96 (2020). https://doi.org/10.1007/s10973-020-09785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09785-7

Keywords

Navigation