Skip to main content
Log in

Tailoring stability and thermophysical properties of CuO nanofluid through ultrasonication

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this research is to examine how ultrasonication time affects agglomeration, stability, thermal conductivity, and viscosity of CuO nanofluid. Using different reaction conditions, distinct shaped CuO nanoparticles are synthesised and dispersed in an EG: DW (70:30) ratio with 0.3 vol%. Microscopic and TEM images are used to analyze colloidal solutions with varying sizes and shapes of nanoparticles. After 30 days of preparation, the zeta potential is measured to ensure that the suspension is stable. The Bridgman equation is used to compute thermal conductivity using sound velocity values. Viscosity of colloidal suspension is measured by viscometer. All of the studies are performed at 30° ± 2 °C room temperature for ultrasonication times ranging from 30–120 min. At an optimal sonication time of 80 min, there is less agglomeration and more stable particle dispersion. In comparison to other morphological suspensions, CuO spherical shape suspended nanofluid has the lowest viscosity and maximum thermal conductivity, as well as the most stable fluid. At the optimal sonication period, measured results demonstrate thermal increase and decreased viscosity, which could have implications for heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev Elsevier. 2011;15:1646–68.

    CAS  Google Scholar 

  2. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    CAS  Google Scholar 

  3. El-Genk MS, Tournier J-M. Noble gas binary mixtures for gas-cooled reactor power plants. Nucl Eng Des. 2008;238:1353–72.

    CAS  Google Scholar 

  4. Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: John Wiley & Sons; 2007.

    Google Scholar 

  5. Berrada N, Hamze S, Desforges A, Ghanbaja J, Gleize J, Mare T, et al. Surface tension of functionalized MWCNT-based nanofluids in water and commercial propylene-glycol mixture. J Mol Liq. 2019;293:111473.

    CAS  Google Scholar 

  6. Gomez-Villarejo R, Aguilar T, Hamze S, Estellé P, Navas J. Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties. J Mol Liq. 2019;277:93–103.

    CAS  Google Scholar 

  7. Das SK, Choi SU, Patel HE. Heat transfer in nanofluids—a review. Heat Transf Eng Taylor & Francis. 2006;27:3–19.

    CAS  Google Scholar 

  8. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States). 1995.

  9. Sivashanmugam P. Application of nanofluids in heat transfer. An overview of heat transfer phenomena, InTechOpen; 2012.

  10. Eastman JA, Choi US, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. Argonne National Lab., IL (United States); 1996.

  11. Minea AA, Estellé P. Numerical study on CNT nanofluids behavior in laminar pipe flow. J Mol Liq. 2018;271:281–9.

    CAS  Google Scholar 

  12. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys lett. 2001;78:718–20.

    CAS  Google Scholar 

  13. Chen H, Witharana S, Jin Y, Kim C, Ding Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 2009;7:151–7.

    CAS  Google Scholar 

  14. Lee S, Choi S-S, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999. https://doi.org/10.1115/1.2825978.

    Article  Google Scholar 

  15. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312.

    Google Scholar 

  16. Wong KV, Castillo MJ. Heat transfer mechanisms and clustering in nanofluids. Adv Mech Eng. 2010;2:795478.

    Google Scholar 

  17. Kole M, Dey TK. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D Appl Phys. 2010;43:315501.

    Google Scholar 

  18. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    CAS  Google Scholar 

  19. Zeroual S, Estellé P, Cabaleiro D, Vigolo B, Emo M, Halim W, et al. Ethylene glycol based silver nanoparticles synthesized by polyol process: characterization and thermophysical profile. J Mol Liq. 2020;310:113229.

    CAS  Google Scholar 

  20. Asadi A, Alarifi IM, Ali V, Nguyen HM. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: finding the optimum ultrasonication time. Ultrason Sonochemistry. 2019;58:104639.

    CAS  Google Scholar 

  21. Riahi A, Khamlich S, Balghouthi M, Khamliche T, Doyle TB, Dimassi W, et al. Study of thermal conductivity of synthesized Al2O3-water nanofluid by pulsed laser ablation in liquid. J Mol Liq. 2020;304:112694.

    CAS  Google Scholar 

  22. Munyalo JM, Zhang X. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: a review. J Mol Liq. 2018;265:77–87.

    CAS  Google Scholar 

  23. Banisharif A, Aghajani M, Van Vaerenbergh S, Estellé P, Rashidi A. Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe3O4 nanofluids at low concentration and temperature. J Mol Liq. 2020;302:112606.

    CAS  Google Scholar 

  24. Hong T-K, Yang H-S, Choi CJ. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys. 2005;97:064311.

    Google Scholar 

  25. Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 2008;103:074301.

    Google Scholar 

  26. Leena M, Srinivasan S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. J Mol Liq. 2015;206:103–9.

    CAS  Google Scholar 

  27. Shah J, Ranjan M, Gupta SK, Sonvane Y. Ultrasonication effect on thermophysical properties of Al2O3 nanofluids. In: AIP conference proceedings. AIP Publishing LLC; 2018. p. 020008.

  28. Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19:315701.

    CAS  PubMed  Google Scholar 

  29. Yang Y, Grulke EA, Zhang ZG, Wu G. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys. 2006;99:114307.

    Google Scholar 

  30. Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal. Korean Society of Rheology/한국유변학회. 2005;17:35–40.

  31. Chung SJ, Leonard JP, Nettleship I, Lee JK, Soong Y, Martello DV, et al. Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol. 2009;194:75–80.

    CAS  Google Scholar 

  32. Thomas S, Sobhan CBP. A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res Lett. 2011;6:377.

    PubMed  PubMed Central  Google Scholar 

  33. Mason JM, Hagemann UB, Arndt KM. Role of hydrophobic and electrostatic interactions in coiled coil stability and specificity. Biochem ACS Publ. 2009;48:10380–8.

    CAS  Google Scholar 

  34. Meyer JP, Adio SA, Sharifpur M, Nwosu PN. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng Taylor & Francis. 2016;37:387–421.

    CAS  Google Scholar 

  35. Suganthi KS, Anusha N, Rajan KS. Low viscous ZnO–propylene glycol nanofluid: a potential coolant candidate. J Nanoparticle Res. 2013;15:1986.

    Google Scholar 

  36. Ying C, Zhaoying Z, Ganghua Z. Effects of different tissue loads on high power ultrasonic surgery scalpel. Ultrasound Med & Biology. 2006;32:415–20.

    Google Scholar 

  37. Xia E-Q, Ai X-X, Zang S-Y, Guan T-T, Xu X-R, Li H-B. Ultrasound-assisted extraction of phillyrin from Forsythia suspensa. Ultrason Sonochem. 2011;18:549–52.

    CAS  PubMed  Google Scholar 

  38. Hartmann NB, Jensen KA, Baun A, Rasmussen K, Rauscher H, Tantra R, et al. Techniques and protocols for dispersing nanoparticle powders in aqueous media—is there a rationale for harmonization? J Toxicol Environ Health Part B Taylor & Francis. 2015;18:299–326.

    CAS  Google Scholar 

  39. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater Nat Publ Group. 2004;3:891–5.

    CAS  Google Scholar 

  40. Noroozi M, Azmi BZ, Moksin MM. The reliability of optical fiber-TWRC technique in liquids thermal diffusivity measurement. Infrared Phys & Technol. 2010;53:193–6.

    CAS  Google Scholar 

  41. Pradhan S, Hedberg J, Blomberg E, Wold S, Wallinder IO. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanoparticle Res. 2016;18:285.

    Google Scholar 

  42. Verwey EJW, Overbeek JTG, Van Nes K. Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. Amsterdam: Elsevier Publishing Company; 1948.

    Google Scholar 

  43. Ilyas SU, Pendyala R, Marneni N. Stability of Nanofluids. In: Korada VS, Hisham B Hamid N, editors. Engineering applications of nanotechnology [Internet]. Cham: Springer International Publishing; 2017 [cited 2022 Jan 13]. p. 1–31. Available from: http://link.springer.com/https://doi.org/10.1007/978-3-319-29761-3_1

  44. Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7:1–14.

    Google Scholar 

  45. Kiruba R, Gopalakrishnan M, Mahalingam T, Jeevaraj A. Ultrasonic studies on zinc oxide nanofluids. J Nanofluids Am Sci Publ. 2012;1:97–100.

    CAS  Google Scholar 

  46. Yadav RR, Mishra G, Yadawa PK, Kor SK, Gupta AK, Raj B, et al. Ultrasonic properties of nanoparticles-liquid suspensions. Ultrasonics. 2008;48:591–3.

    CAS  PubMed  Google Scholar 

  47. Álvarez-Arenas TG, Segura LE, de Sarabia ERF. Characterization of suspensions of particles in water by an ultrasonic resonant cell. Ultrasonics. 2002;39:715–27.

    Google Scholar 

  48. Shah J, Ranjan M, Gupta SK, Satyaprasad A, Chaki S, Sonvane Y. Reaction temperature dependent shape-controlled studies of copper-oxide nanocrystals. Mater Res Express. 2018;5:065037.

    Google Scholar 

  49. Shah J, Kumar S, Ranjan M, Sonvane Y, Thareja P, Gupta SK. The effect of filler geometry on thermo-optical and rheological properties of CuO nanofluid. J Mol Liq. 2018;272:668–75.

    CAS  Google Scholar 

  50. Senthilraja S, Vijayakumar K, Gangadevi R. A comparative study on thermal conductivity of Al2O3/water, CuO/water and Al2O3–CuO/water nanofluids. Dig J Nanomater Biostruct. 2015;10:1449–58.

    Google Scholar 

  51. Zhao H, Zhou XX, Pan LY, Wang M, Chen HR, Shi JL. Facile synthesis of spinel Cu 1.5 Mn 1.5 O 4 microspheres with high activity for the catalytic combustion of diesel soot. RSC Adv. 2017;7:20451–9.

    CAS  Google Scholar 

  52. Sun CC. Thermal expansion of organic crystals and precision of calculated crystal density: a survey of cambridge crystal database. J Pharm Sci. 2007;96:1043–52.

    CAS  PubMed  Google Scholar 

  53. Kedzierski MA. Viscosity and density of CuO nanolubricant. Int J Refrig. 2012;35:1997–2002.

    CAS  Google Scholar 

  54. Wu Z, Yang S, Wu W. Shape control of inorganic nanoparticles from solution. Nanoscale R Soc Chem. 2016;8:1237–59.

    CAS  Google Scholar 

  55. Chen G, Xu C, Huang X, Ye J, Gu L, Li G, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat Mater Nat Publ Group. 2016;15:564–9.

    CAS  Google Scholar 

  56. Ullah MH, Kim I, Ha C-S. One-step synthetic route for producing nanoslabs: Zn-oriented polycrystalline and single-crystalline zinc oxide. J Mater Sci. 2006;41:3263–9.

    CAS  Google Scholar 

  57. Hanus LH, Sooklal K, Murphy CJ, Ploehn HJ. Aggregation kinetics of dendrimer-stabilized CdS nanoclusters. Langmuir ACS Publ. 2000;16:2621–6.

    CAS  Google Scholar 

  58. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, et al. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47:103–11.

    CAS  Google Scholar 

  59. Feigl CA, Barnard AS, Russo SP. Modelling polar wurtzite ZnS nanoparticles: the effect of sulphur supersaturation on size-and shape-dependent phase transformations. J Mater Chem. 2012;22:18992–8.

    CAS  Google Scholar 

  60. Shah J, Ranjan M, Davaria V, Gupta S, Sonvane Y. Temperature-dependent thermal conductivity and viscosity of synthesized α-Alumina nanofluids. Appl Nanosci. 2017;7:803–13.

    CAS  Google Scholar 

  61. Rashin MN, Hemalatha J. A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J Mol Liq. 2014;197:257–62.

    Google Scholar 

  62. Vandsburger L, Swanson EJ, Tavares J, Meunier J-L, Coulombe S. Stabilized aqueous dispersion of multi-walled carbon nanotubes obtained by RF glow-discharge treatment. J Nanoparticle Res. 2009;11:1817.

    CAS  Google Scholar 

  63. Mahbubul IM, Chong TH, Khaleduzzaman SS, Shahrul IM, Saidur R, Long BD, et al. Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid. Ind & Eng Chem Res. 2014;53:6677–84.

    CAS  Google Scholar 

  64. Sadeghi R, Etemad SG, Keshavarzi E, Haghshenasfard M. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid Nanofluid. 2015;18:1023–30.

    CAS  Google Scholar 

  65. Nishant K, Sonawane SS. Influence of CuO and TiO2 nanoparticles in enhancing the overall heat transfer coefficient and thermal conductivity of water and ethylene glycol based nanofluids. Res J Chem Environ. 2016;20:8.

    Google Scholar 

  66. Zeroual S, Loulijat H, Achehal E, Estellé P, Hasnaoui A, Ouaskit S. Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: effects of nanoparticle content, temperature and potential interaction. J Mol Liq. 2018;268:490–6.

    CAS  Google Scholar 

  67. Alias H, Ani MFC, Sa’ad SF, Ngadi N. Heat transfer of alumina-deionized water nanofluids in concentric tube heat exchanger. In: AIP Conference Proceedings. AIP Publishing LLC; 2017. p. 020001.

  68. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.

    CAS  Google Scholar 

  69. Starr FW, Douglas JF, Glotzer SC. Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology. J Chem Phys. 2003;119:1777–88.

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Yogesh Sonvane, Assistant Professor, Department of Applied Physics, SVNIT, Surat, India, Dr, Sanjeev K. Gupta, Assistant Professor, St. Xavier's College, Ahmedabad, India, and Dr. Saket Kumar, IIT Gandhinagar, Gujarat, India for useful discussion and the provision of equipment required for testing.

Author information

Authors and Affiliations

Authors

Contributions

JS contributed to Investigation, Conceptualization, Visualization, Data curation, Formal analysis, Writing—original draft, Writing—review & editing. MR contributed to Supervision, Formal analysis, Methodology, Writing—reviewing & editing. PT contributed to Supervision, Data curation, Formal analysis. PE contributed to Supervision, Formal analysis, Writing—review & editing.

Corresponding authors

Correspondence to Janki Shah or Patrice Estellé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, J., Ranjan, M., Thareja, P. et al. Tailoring stability and thermophysical properties of CuO nanofluid through ultrasonication. J Therm Anal Calorim 147, 10319–10328 (2022). https://doi.org/10.1007/s10973-022-11266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11266-y

Keywords

Navigation