Skip to main content
Log in

Thermodynamic properties of sodium pentatitanate (Na8Ti5O14)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High-purity Na8Ti5O14 was synthesized using Na2CO3 and TiO2 as the starting materials by a solid-phase reaction. Heat capacity of Na8Ti5O14 was measured by PPMS at low temperatures and MHTC 96 line at high temperatures. The changes in enthalpy at 298.15 K were \(\Delta_{0}^{{298.15\;{\text{K}}}} H_{{\rm m}}\) = 95.43 kJ mol−1, and standard molar entropy was \(S_{{\rm m}}^{\theta }\) = 569.35 J\,mol−1\,K−1, respectively. The changes in enthalpy (\(\Delta_{298.15}^{{T_{{\rm m}} }} H_{{\rm m}}\)), entropy (\(\Delta_{298.15}^{{T_{{\rm m}} }} S_{{\rm m}}\)), and Gibbs energy (\(\Delta_{298.15}^{{T_{{\rm m}} }} G_{{\rm m}}\)) from (298.15 to 1303) K were calculated using heat capacity functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM. Key challenges in future Li-battery research. Philos Trans R Soc A. 1923;2010(368):3227–41. https://doi.org/10.1098/rsta.2010.0112.

    Article  Google Scholar 

  2. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–67. https://doi.org/10.1038/35104644.

    Article  CAS  Google Scholar 

  3. Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci. 2012;16(4):168–77. https://doi.org/10.1016/j.cossms.2012.04.002.

    Article  CAS  Google Scholar 

  4. Naeyaert PJP, Avdeev M, Sharma N, Yahia HB, Ling CD. Synthetic, structural, and electrochemical study of monoclinic Na4Ti5O12 as a sodium-ion battery anode material. Chem Mater. 2014;26:7067–72. https://doi.org/10.1021/cm5035358.

    Article  CAS  Google Scholar 

  5. Altin S, Demirel S, Oz E, Altin E, Hetherington C, Bayri A, et al. Synthesis of Na2Ti3O7 nano-rods by V-assisted route and investigation of their battery performance. CrystEngComm. 2020. https://doi.org/10.1039/C9CE01955C.

    Article  Google Scholar 

  6. Liu Y, Sun Z, Tan K, Denis DK, Sun J, Liang L, et al. Recent progress in flexible non-lithium based rechargeable batteries. J Mater Chem A. 2019. https://doi.org/10.1039/C8TA10258A.

    Article  Google Scholar 

  7. Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011–4. https://doi.org/10.1149/1.3607983.

    Article  CAS  Google Scholar 

  8. Libich J, Máca J, Chekannikov A, Vondrák J, Čudek P, Fíbek M, et al. Sodium titanate for sodium-Ion batteries. Surf Engin ApplElectrochem. 2019;55(1):109–13. https://doi.org/10.3103/S1068375519010125.

    Article  Google Scholar 

  9. Rambabu A, Kishore B, Munichandraiah N, Krupanidhi SB, Barpanda P. Na2Ti6O13 thin films as anode for thin film sodium ion batteries. AIP Conf Proc. 2017;1832(1): 080059. https://doi.org/10.1063/1.4980519.

    Article  CAS  Google Scholar 

  10. Du W-T, Jung I-H. Critical Evaluation and Thermodynamic Modeling of the Fe–V–O (FeO–Fe2O3–VO–V2O3–VO2–V2O5) System. CALPHAD Comput Coupling Phase Diagrams Thermochem. 2019;67: 101682. https://doi.org/10.1016/j.calphad.2019.101682.

    Article  CAS  Google Scholar 

  11. Yang L, Hou Y, Pei G, Xin Y, Lv X. Thermodynamic Properties of Sodium Trititanate (Na2Ti3O7) at High Temperature (298.15–1403 K). J Am Ceram Soc. 2021;104(9):4782–7. https://doi.org/10.1111/jace.17824.

    Article  CAS  Google Scholar 

  12. Andersson S, Wadsley AD. The crystal structure of Na2Ti3O7. Acta Cryst. 1961;14(12):1245–9. https://doi.org/10.1107/S0365110X61003636.

    Article  CAS  Google Scholar 

  13. Sauvet AL, Baliteau S, Lopez C, Fabry P. Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. J Solid State Chem. 2004;177(12):4508–15. https://doi.org/10.1016/j.jssc.2004.09.008.

    Article  CAS  Google Scholar 

  14. Andersson S, Wadsley A. The Structures of Na2Ti6O13 and Rb2Ti6O13 and the Alkali metal titanates. Acta Cryst. 1962;15(3):194–201. https://doi.org/10.1107/S0365110X62000511.

    Article  CAS  Google Scholar 

  15. Ferrante MJ. High-temperature relative enthalpies and related thermodynamic properties of Na2Ti6O13. Bur Mines Rep Invest. 1986;9018.

  16. Takei H. Growth and properties of Na8Ti5O14 Crystals. J Mater Sci. 1976;11(8):1465–9. https://doi.org/10.1007/BF00540879.

    Article  CAS  Google Scholar 

  17. Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín MR. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater. 2011;23(18):4109–11. https://doi.org/10.1021/cm202076g.

    Article  CAS  Google Scholar 

  18. Pei GS, Xiang JY, Lv XW, Li G, Wu SS, Zhong DP, et al. High-temperature heat capacity and phase transformation kinetics of NaVO3. J Alloys Compd. 2019;794:465–72. https://doi.org/10.1016/j.jallcom.2019.04.186.

    Article  CAS  Google Scholar 

  19. Gopal E. Specific heats at low temperatures. International cryogenics monograph, vol 12. Albert Emanuel Library Universuty of Dayton; 1966.

  20. Shi Q, Zhang L, Schlesinger ME, Boerio-Goates J, Woodfield BF. Low temperature heat capacity Study of Fe(PO3)3 and Fe2P2O7. J Chem Thermodyn. 2013;61:51–7. https://doi.org/10.1016/j.jct.2013.02.001.

    Article  CAS  Google Scholar 

  21. Leitner J, Sedmidubský D, Růžička K, Svoboda P. Heat Capacity, enthalpy and entropy of SrBi2O4 and Sr2Bi2O5. Thermochim Acta. 2012;531:60–5. https://doi.org/10.1016/j.tca.2012.01.002.

    Article  CAS  Google Scholar 

  22. Silva MAVRD, Silva MDMCRD, Ferreira AIMCL, Shi Q, Woodfield BF, Goldberg RN. Thermochemistry of α-D-xylose(cr). J Chem Thermodyn. 2013;58:20–8. https://doi.org/10.1016/j.jct.2012.09.028.

    Article  CAS  Google Scholar 

  23. Gamsjäger E, Wiessner M. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals. Monatsh Chem. 2018;149(2):357–68. https://doi.org/10.1007/s00706-017-2117-3.

    Article  CAS  Google Scholar 

  24. Pei GS, Xiang JY, Yang LL, Jin X, Lv XW. Thermodynamic properties of sodium pyrovanadate (Na4V2O7) at high temperature (29815–873 K). CALPHAD Comput Coupling Phase Diagrams Thermochem. 2020;70: 101802. https://doi.org/10.1016/j.calphad.2020.101802.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFC1900500), Graduate Scientific Research and Innovation Foundation of Chongqing, China (Grant No. CYS21004), and National Natural Science Foundation of China (No.51904048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewei Lv or Yuntao Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Hou, Y., Pei, G. et al. Thermodynamic properties of sodium pentatitanate (Na8Ti5O14). J Therm Anal Calorim 147, 14509–14516 (2022). https://doi.org/10.1007/s10973-022-11507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11507-0

Keywords

Navigation