Skip to main content
Log in

Kinetic investigation of the multi-step thermal decomposition of graphene oxide paper

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal annealing is a convenient, low-cost, and versatile route to fine-tune the physicochemical properties of graphene oxide paper (GOP) toward various applications. Therefore, a thorough monitoring of the thermal decomposition of GOP is generally required for a precise and safe adjustment of its properties. From this perspective, thermogravimetry analysis (TG-A) is employed to scrutinize the multi-step thermal decomposition process of GOP under a nitrogen atmosphere. GOP is elaborated from modified hummers graphene oxide (GO). Nonisothermal TG-A is carried out for the as-prepared GOP at different heating rates. Activation energy is assessed for the overall decomposition process by several isoconversional models. Derivative thermogravimetry (D-TG) curves are derived numerically from TG-A data. To find the number of reactions involved, D-TG curves are deconvoluted into individual peaks by the well-known Fraser–Suzuki function. The obtained results show that the thermal decomposition of GOP consists mainly of six reactions: physisorbed water dehydration, rearrangement and elimination of oxygen functional groups, disproportionation reaction, chemisorbed water dehydration, desulfonation, and degradation of the carbon framework. Furthermore, kinetic triplets for each of the individual reactions are figured out by coupling the Vyazovkin nonlinear method with the compensation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu R, Gong T, Zhang K, Lee C, Marothiya G, Vijay C, et al. Graphene oxide papers with high water adsorption capacity for air dehumidification. Sci Rep. 2019;7:969–74. https://doi.org/10.1016/j.jhazmat.2018.11.100.

    Article  CAS  Google Scholar 

  2. Yeh CN, Raidongia K, Shao J, Yang QH, Huang J. On the origin of the stability of graphene oxide membranes in water. Nat Chem. 2015;7:166–70. https://doi.org/10.1038/nchem.2145.

    Article  CAS  Google Scholar 

  3. Arul R, Oosterbeek RN, Robertson J, Xu G, Jin J, Simpson MC. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon. 2016;99:423–31. https://doi.org/10.1016/j.carbon.2015.12.038.

    Article  CAS  Google Scholar 

  4. El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 1979;2012(335):1326–30. https://doi.org/10.1126/science.1216744.

    Article  CAS  Google Scholar 

  5. Chen CM, Huang JQ, Zhang Q, Gong WZ, Yang QH, Wang MZ, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon. 2012;50:659–67. https://doi.org/10.1016/j.carbon.2011.09.022.

    Article  CAS  Google Scholar 

  6. Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010;1:73. https://doi.org/10.1038/ncomms1067.

    Article  CAS  PubMed  Google Scholar 

  7. Bae S-Y, Jeon I-Y, Yang J, Park N, Shin HS, Park S, et al. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. ACS Nano. 2011;5:4974–80. https://doi.org/10.1021/nn201072m.

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim AFM, Lin YS. Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci. 2018;190:312–9. https://doi.org/10.1016/j.ces.2018.06.031.

    Article  CAS  Google Scholar 

  9. Ai X, Zhang P, Dou Y, Wu Y, Pan T, Chu C, et al. Graphene oxide membranes with hierarchical structures used for molecule sieving. Sep Purif Technol. 2020;230:115879. https://doi.org/10.1016/j.seppur.2019.115879.

    Article  CAS  Google Scholar 

  10. Akbi H, Rafai S, Mekki A, Touidjine S, Fertassi M, Kadri DE. When Copper Oxide meets graphene oxide: A core-shell structure via an intermittent spray coating route for a highly efficient ammonium perchlorate thermal decomposition. J Organomet Chem. 2022;957:122159.

    Article  CAS  Google Scholar 

  11. Akbi H, Rafai S, Mekki A. Reduced graphene oxide film with an ultrahigh energy density for Battery-like supercapacitor. Materials Chemistry. 2021 [cited 2021 Dec 21];21. Available from: https://www.researchgate.net/profile/Mohamed-Kadari/publication/353333687_Proceedings_Book_ISyMC2021/links/60f56d2e16f9f3130093e897/Proceedings-Book-ISyMC2021.pdf#page=42

  12. Akbi H, Yu L, Wang B, Liu Q, Wang J, Liu J, et al. Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor. J Solid State Chem. 2015;221:338–44.

    Article  CAS  Google Scholar 

  13. Akbi H, Rafai S, Mekki A, Touidjine S, Belkadi K, Boudina N, et al. Boosting the storage capacity and the rate capability of flexible graphene film via a nondestructive thermo-chemical reduction. Diam Relat Mater. 2022;129:109338.

    Article  CAS  Google Scholar 

  14. Wang Z, Xu D, Huang Y, Wu Z, Wang L, Zhang X. Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem Commun. 2012;48:976–8.

    Article  CAS  Google Scholar 

  15. Zeng Y, Li T, Yao Y, Li T, Hu L, Marconnet A. thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv Funct Mater. 2019;29:1901388. https://doi.org/10.1002/adfm.201901388.

    Article  CAS  Google Scholar 

  16. Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon. 2010;48:1945–51.

    Article  CAS  Google Scholar 

  17. Choi Y-Y, Kang SJ, Kim H-K, Choi WM, Na S-I. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Solar Energy Mater Solar Cells. 2012;96:281–5. https://doi.org/10.1016/j.solmat.2011.09.031.

    Article  CAS  Google Scholar 

  18. Pelaez-Fernandez M, Bermejo A, Benito AM, Maser WK, Arenal R. Detailed thermal reduction analyses of graphene oxide via in-situ TEM/EELS studies. Carbon. 2021;178:477–87.

    Article  CAS  Google Scholar 

  19. Chen X, Meng D, Wang B, Li B-W, Li W, Bielawski CW, et al. Rapid thermal decomposition of confined graphene oxide films in air. Carbon. 2016;101:71–6. https://doi.org/10.1016/j.carbon.2016.01.075.

    Article  CAS  Google Scholar 

  20. Zhao J, Li Y, Wang Y, Mao J, He Y, Luo J. Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction. RSC Adv. 2017;7:1766–70.

    Article  CAS  Google Scholar 

  21. Ju HM, Huh SH, Choi SH, Lee HL. Structures of thermally and chemically reduced graphene. Mater Lett. 2010;64:357–60. https://doi.org/10.1016/j.matlet.2009.11.016.

    Article  CAS  Google Scholar 

  22. Le GTT, Manyam J, Opaprakasit P, Chanlek N, Grisdanurak N, Sreearunothai P. Divergent mechanisms for thermal reduction of graphene oxide and their highly different ion affinities. Diam Relat Mater. 2018;89:246–56. https://doi.org/10.1016/j.diamond.2018.09.006.

    Article  CAS  Google Scholar 

  23. Sengupta I, Sharat Kumar SSS, Pal SK, Chakraborty S. Characterization of structural transformation of graphene oxide to reduced graphene oxide during thermal annealing. J Mater Res. 2020;35:1197–204. https://doi.org/10.1557/jmr.2020.55.

    Article  CAS  Google Scholar 

  24. Hun Seung. Thermal reduction of graphene oxide. In: Mikhailov S, editor. Physics and Applications of Graphene-Experiments. InTech; 2011. https://doi.org/10.5772/14156.

    Chapter  Google Scholar 

  25. Akbi H, Mekki A, Rafai S, Touidjine S, Boudina N, Sayeh ZB. Phenomenological description of the thermal reduction kinetics in graphene oxide films. Mater Chem Phys. 2022;277:125477.

    Article  CAS  Google Scholar 

  26. Rouzière S, Launois P, Benito AM, Maser WK, Paineau E. Unravelling the hydration mechanism in a multi-layered graphene oxide paper by in-situ X-ray scattering. Carbon. 2018;137:379–83.

    Article  Google Scholar 

  27. Núñez JD, Benito AM, Rouzière S, Launois P, Arenal R, Ajayan PM, et al. Graphene oxide–carbon nanotube hybrid assemblies: cooperatively strengthened OH⋯OC hydrogen bonds and the removal of chemisorbed water. Chem Sci. 2017;8:4987–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rouzière S, Núñez JD, Paineau E, Benito AM, Maser WK, Launois P. Intercalated water in multi-layered graphene oxide paper: an X-ray scattering study. J Appl Crystallogr. 2017;50:876–84.

    Article  Google Scholar 

  29. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339–1339. https://doi.org/10.1021/ja01539a017.

    Article  CAS  Google Scholar 

  30. Chen J, Yao B, Li C, Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–9. https://doi.org/10.1016/j.carbon.2013.07.055.

    Article  CAS  Google Scholar 

  31. Eigler S, Dotzer C, Hof F, Bauer W, Hirsch A. Sulfur species in graphene oxide. Chem-A Eur J. 2013;19:9490–6. https://doi.org/10.1002/chem.201300387.

    Article  CAS  Google Scholar 

  32. Shen Y, Boffa V, Corazzari I, Qiao A, Tao H, Yue Y. Revealing hidden endotherm of Hummers’ graphene oxide during low-temperature thermal reduction. Carbon. 2018;138:337–47. https://doi.org/10.1016/j.carbon.2018.05.018.

    Article  CAS  Google Scholar 

  33. Eigler S, Grimm S, Hirsch A. Investigation of the thermal stability of the carbon framework of graphene oxide. Chem-A Eur J. 2014;20:984–9. https://doi.org/10.1002/chem.201304048.

    Article  CAS  Google Scholar 

  34. Oh YJ, Yoo JJ, Kim YL, Yoon JK, Yoon HN, Kim JH, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta. 2014;116:118–28. https://doi.org/10.1016/j.electacta.2013.11.040.

    Article  CAS  Google Scholar 

  35. Agarwal V, Zetterlund PB. Strategies for reduction of graphene oxide–A comprehensive review. Chem Eng J. 2021;405:127018. https://doi.org/10.1016/j.cej.2020.127018.

    Article  CAS  Google Scholar 

  36. Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, et al. Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev. 2017;46:4464–500.

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Lu Y, Yan J, Yu W, Zhao R, Du S, et al. Effect of long-term ageing on graphene oxide: structure and thermal decomposition. R Soc Open Sci. 2021. https://doi.org/10.1098/rsos.202309.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, et al. Room-temperature metastability of multilayer graphene oxide films. Nat Mater. 2012;11:544–9. https://doi.org/10.1038/nmat3316.

    Article  CAS  PubMed  Google Scholar 

  39. Foller T, Daiyan R, Jin X, Leverett J, Kim H, Webster R, et al. Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity. Materials Today. 2021;50:44–54.

    Article  CAS  Google Scholar 

  40. Kim YJ, Kahng YH, Hwang YH, Lee SM, Lee SY, Lee HR, et al. Optimization of graphene oxide synthesis parameters for improving their after-reduction material performance in functional electrodes. Mater Res Express. 2016;3:1–14. https://doi.org/10.1088/2053-1591/3/10/105033.

    Article  CAS  Google Scholar 

  41. Jeong H, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH. Thermal stability of graphite oxide. Chem Phys Lett. 2009;470:255–8. https://doi.org/10.1016/j.cplett.2009.01.050.

    Article  CAS  Google Scholar 

  42. Sandoval S, Kumar N, Sundaresan A, Rao CNR, Fuertes A, Tobias G. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping. Chem- A Eur J. 2014;20:11999–2003. https://doi.org/10.1002/chem.201403833.

    Article  CAS  Google Scholar 

  43. Krishnan D, Kim F, Luo J, Cruz-Silva R, Cote LJ, Jang HD, et al. Energetic graphene oxide: challenges and opportunities. Nano Today. 2012;7:137–52. https://doi.org/10.1016/j.nantod.2012.02.003.

    Article  CAS  Google Scholar 

  44. Kim F, Luo J, Cruz-Silva R, Cote LJ, Sohn K, Huang J. Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater. 2010;20:2867–73. https://doi.org/10.1002/adfm.201000736.

    Article  CAS  Google Scholar 

  45. Qiu Y, Guo F, Hurt R, Külaots I. Explosive thermal reduction of graphene oxide-based materials: Mechanism and safety implications. Carbon. 2014;72:215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qiu Y, Collin F, Hurt RH, Külaots I. Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbon. 2016;96:20–8. https://doi.org/10.1016/j.carbon.2015.09.040.

    Article  CAS  PubMed  Google Scholar 

  47. Lakhe P, Kulhanek DL, Sun W, Zhang B, Green MJ, Mannan MS. Calorimetry of explosive thermal decomposition of graphite oxide. J Hazard Mater. 2019;366:275–81. https://doi.org/10.1016/j.jhazmat.2018.11.100.

    Article  CAS  PubMed  Google Scholar 

  48. Yin K, Li H, Xia Y, Bi H, Sun J, Liu Z, et al. Thermodynamic and kinetic analysis of lowtemperature thermal reduction of graphene oxide. Nanomicro Lett. 2011;3:51–5.

    CAS  Google Scholar 

  49. Vyazovkin S, Chrissafis K, di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  50. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689:178597. https://doi.org/10.1016/j.tca.2020.178597.

    Article  CAS  Google Scholar 

  51. Sbirrazzuoli N. Advanced isoconversional kinetic analysis for the elucidation of complex reaction mechanisms: a new method for the identification of rate-limiting steps. Molecules. 2019;24:1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14. https://doi.org/10.1007/s10973-012-2406-3.

    Article  CAS  Google Scholar 

  53. Wada T, Nakano M, Koga N. Multistep kinetic behavior of the thermal decomposition of granular sodium Percarbonate: Hindrance effect of the outer surface layer. J Phys Chem A. 2015;119:9749–60. https://doi.org/10.1021/acs.jpca.5b07042.

    Article  CAS  PubMed  Google Scholar 

  54. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  55. Pinzi S, Buratti C, Bartocci P, Marseglia G, Fantozzi F, Barbanera M. A simplified method for kinetic modeling of coffee silver skin pyrolysis by coupling pseudo-components peaks deconvolution analysis and model free-isoconversional methods. Fuel. 2020;278:118260. https://doi.org/10.1016/j.fuel.2020.118260.

    Article  CAS  Google Scholar 

  56. Yamamoto K. Thermal decomposition of maya blue: extraction of indigo thermal decomposition steps from a multistep heterogeneous reaction using a kinetic deconvolution analysis. Molecules. 2019;24:2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yan Q-L, Zeman S, Zhang J-G, He P, Musil T, Bartošková M. Multi-stage decomposition of 5-aminotetrazole derivatives: kinetics and reaction channels for the rate-limiting steps. Phys Chem Chem Phys. 2014;16:24282–91.

    Article  CAS  PubMed  Google Scholar 

  58. Brown ME. Introduction to thermal analysis. In: Brown ME, editor. Kluwer, Dodrecht. Dordrecht: Kluwer Academic Publishers; 2004.

    Google Scholar 

  59. Órfão JJM. Review and evaluation of the approximations to the temperature integral. AIChE Journal. 2007;53:2905–15. https://doi.org/10.1002/aic.11296.

    Article  CAS  Google Scholar 

  60. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  61. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Thermal Anal. 1977;11:445–7. https://doi.org/10.1007/BF01903696.

    Article  Google Scholar 

  62. Akbi H, Mekki A, Rafai S. New linear integral kinetic parameters assessment method based on an accurate approximate formula of temperature integral. Int J Chem Kinet. 2022;54:28–41. https://doi.org/10.1002/kin.21538.

    Article  CAS  Google Scholar 

  63. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  64. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy & Fuels. 1999;13:1–22. https://doi.org/10.1021/ef9800765.

    Article  CAS  Google Scholar 

  65. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5. https://doi.org/10.1021/ci950062m.

    Article  CAS  Google Scholar 

  66. Sbirrazzuoli N. Determination of pre-exponential factor and reaction mechanism in a model-free way. Thermochim Acta. 2020;691:178707. https://doi.org/10.1016/j.tca.2020.178707.

    Article  CAS  Google Scholar 

  67. Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes. Cham: Springer International Publishing; 2015.

    Book  Google Scholar 

  68. Farivar F, Lay Yap P, Karunagaran RU, Losic D. Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters. C (Basel). 2021;7:41.

    CAS  Google Scholar 

  69. Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C. 2011;115:19761–81. https://doi.org/10.1021/jp2052618.

    Article  CAS  Google Scholar 

  70. Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, et al. The role of intercalated water in multilayered graphene oxide. ACS Nano. 2010;4:5861–8. https://doi.org/10.1021/nn101844t.

    Article  CAS  PubMed  Google Scholar 

  71. Pan Q, Chung C, He N, Jones JL, Gao W. Accelerated thermal decomposition of graphene oxide films in air via in Situ X-ray diffraction analysis. J Phys Chem C. 2016;120:14984–90. https://doi.org/10.1021/acs.jpcc.6b05031.

    Article  CAS  Google Scholar 

  72. Klemeyer L, Park H, Huang J. Geometry-dependent thermal reduction of graphene oxide solid. ACS Mater Lett. 2021;3:511–5. https://doi.org/10.1021/acsmaterialslett.0c00423.

    Article  CAS  Google Scholar 

  73. Farivar F, Yap PL, Hassan K, Tung TT, Tran DNH, Pollard AJ, et al. Unlocking thermogravimetric analysis (TGA) in the fight against “Fake graphene” materials. Carbon. 2021;179:505–13.

    Article  CAS  Google Scholar 

  74. Liu N, Chen H, Shu L, Statheropoulos M. Error evaluation of integral methods by consideration on the approximation of temperature integral. J Therm Anal Calorim. 2005;81:99–105. https://doi.org/10.1007/s10973-005-0751-1.

    Article  CAS  Google Scholar 

  75. Sronsri C, Boonchom B. Deconvolution technique for the kinetic analysis of a complex reaction and the related thermodynamic functions of the formation of LiMn 0.90 Co 0.05 Mg 0.05 PO 4. Chem Phys Lett. 2017;690:116–28.

    Article  CAS  Google Scholar 

  76. Cheikh Moine E, Groune K, El Hamidi A, Khachani M, Halim M, Arsalane S. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale. Energy. 2016;115:931–41.

    Article  Google Scholar 

  77. Pomerantsev AL, Kutsenova AV, Rodionova OY. Kinetic analysis of non-isothermal solid-state reactions: multi-stage modeling without assumptions in the reaction mechanism. Phys Chem Chem Phys Royal Soci Chem. 2017;19:3606–15.

    Article  CAS  Google Scholar 

  78. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91. https://doi.org/10.1021/jp110895z.

    Article  CAS  PubMed  Google Scholar 

  79. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution In Situ X-ray-based spectroscopies. J Phys Chem C. 2011;115:17009–19. https://doi.org/10.1021/jp203741y.

    Article  CAS  Google Scholar 

  80. Sengupta I, Chakraborty S, Talukdar M, Pal SK, Chakraborty S. Thermal reduction of graphene oxide: how temperature influences purity. J Mater Res. 2018;33:4113–22. https://doi.org/10.1557/jmr.2018.338.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. AKBI is very indebted to EcoleMilitairePolytechnique, for the provision of PhD Scholarship granted by the project number 15/2020/DRFPG/EMP

Author information

Authors and Affiliations

Authors

Contributions

Hamdane AKBI was involved in conceptualization, methodology, investigation, and writing the original draft. Souleyman RAFAI and Ahmed MEKKI were responsible for supervision, conceptualization, methodology, and writing—reviewing and editing. Sabri TOUIDJINE and Kamelia BELKADI took part in characterization and writing—reviewing and editing.

Corresponding author

Correspondence to Ahmed Mekki.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbi, H., Rafai, S., Mekki, A. et al. Kinetic investigation of the multi-step thermal decomposition of graphene oxide paper. J Therm Anal Calorim 148, 3487–3503 (2023). https://doi.org/10.1007/s10973-023-11948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11948-1

Keywords

Navigation