Skip to main content
Log in

Characterization of combustion of hardwood and softwood through experimental and computer simulations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Physical experiments and computer simulations are commonly employed to characterize and understand fire behaviour under different conditions. Many medium- to large-scale physical experiments utilize standardized wood cribs as the fire load, while corresponding computer simulations require physical and combustion properties of such fire loads. The design of physical experiments and accuracy of computational models depend heavily on the underlying combustion models. The current study proposes an improved two-step combustion model for soft and hard wood based on physical characterization of different wood samples. Two different types of wood, i.e. softwood and hardwood were characterized using cone calorimeter. Total of six cone tests were performed under irradiation levels of 30, 50 and 75 kW m−2 for each wood sample. Thermogravimetry analysis (TGA) of wood samples was carried out to estimate the combustion kinetic parameters (through different estimation methods) like activation energy, pre-exponential factor, and reaction order for numerical simulation of cone calorimeter tests. The kinetic parameters estimated through the Kissinger–Akahira–Sunose integral method were utilized to perform computer simulation of TGA and cone calorimeter in fire dynamic simulator (FDS) using one-step and two-step combustion models. Thermal degradation temperatures of both the types of wood were observed to be between of 200 and 500 ℃. During whole pyrolysis process, softwood was observed to possess larger activation energy than that of hardwood. The reaction models for softwood and hardwood were found to be diffusion type with reaction order of 2–3. TGA simulation results obtained by the two-step simulation approach were found to be better than that of one-step simulation approach. In case of cone calorimeter simulations, the two-step simulation approach yielded better prediction of heat release rate and time to ignition as compared to that of the one-step simulation approach. It is expected that the present study would be helpful in large-scale FDS fire simulation involving softwood and hardwood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moinuddin K, Razzaque QS, Thomas A. Numerical simulation of coupled pyrolysis and combustion reactions with directly measured fire properties. Polymers. 2020;12(9):2075. https://doi.org/10.3390/polym12092075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu Q, Chen L, Harries KA, Zhang F, Liu Q, Feng J. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr Build Mater. 2015;96:416–27.

    Article  Google Scholar 

  3. Martinka J, Mozer V, Hroncová E, Ladomerský J. Influence of spruce wood form on ignition activation energy. Wood Res. 2015;60(5):815–22.

    Google Scholar 

  4. Bartlett AI, Hadden RM, Bisby LA. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol. 2019;55:1–49.

    Article  Google Scholar 

  5. Amaral SS, De Carvalho Junior JA, Costa M, Neto TG, Dellani R, Leite L. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions. Bioresour Technolol. 2014;164:55–63.

    Article  CAS  Google Scholar 

  6. Gronli MG, Antal MJ, Varhegyi GA. Round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res. 1999;38(6):2238–44.

    Article  CAS  Google Scholar 

  7. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  8. Gasparovic L, Korenova Z, Jelemensky L. Kinetic study of wood chips decomposition by TGA. Chem Pap. 2010;64(2):174–81.

    Article  CAS  Google Scholar 

  9. Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Vacuum pyrolysis of softwood and hardwood biomass: comparison between product yields and bio-oil properties. J Anal Appl Pyrol. 2007;78:104–16.

    Article  CAS  Google Scholar 

  10. Wang S, Ru B, Lin H, Sun W. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel. 2015;150:243–51.

    Article  Google Scholar 

  11. Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrol. 2008;82:170–7.

    Article  CAS  Google Scholar 

  12. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  13. Ding Y, Ezekoye OA, Lu S, Wang C, Zhou R. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Convers Manag. 2017;132:102–9.

    Article  CAS  Google Scholar 

  14. Babrauskas V. Development of the cone calorimeter-A bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984;8(2):81–95.

    Article  CAS  Google Scholar 

  15. Abu-Bakar SA, Cran M, Wadhwani R, Khalid A. Characterisation of pyrolysis and combustion parameters of charring materials most frequently found in buildings. J Therm Anal Calorim. 2020;139:2985–99.

    Article  CAS  Google Scholar 

  16. Dietenberger MA, Grexa O, White RH. Reaction-to-fire of wood products and other building materials: Part II. Cone Calorimeter Tests and Fire Growth Models; US Department of Agriculture, Forest Service, Forest Products Laboratory, 2012; No. FPL-RP-663.

  17. Schartel B, Hull TR. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  18. Shahfizadeh F, Chin PPS. Thermal deterioration of wood. ACS Symposium Ser. 43, American Chemical Society 1977: 57–81.

  19. Atreya A. Fire growth on horizontal surfaces of wood. Ph.D. Thesis, Harvard University. 1983.

  20. Blasi CD. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34(1):47–90.

    Article  Google Scholar 

  21. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data advantages and limitations. Thermochim Acta. 2002;391:119–27.

    Article  CAS  Google Scholar 

  22. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci Part-C 1964;6(1):183–195

  23. Arshad MA, Maaroufi A, Benavente R, Perena JM, Pinto G. Thermal degradation kinetics of insulating/conducting epoxy/zn composites under nonisothermal conditions. Polym Compos. 2013;34(12):2049–60.

    Article  Google Scholar 

  24. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117:10162–9.

    Article  CAS  PubMed  Google Scholar 

  25. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bureau Stand-A Phys Chem. 1966;70A(6):487–523.

    Article  Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–7.

    Article  CAS  Google Scholar 

  27. Ozawa T. Thermal analysis-review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  29. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data II. Polym Lett. 1965;3:917–20.

    Article  CAS  Google Scholar 

  30. Constable FH. The mechanism of catalytic decomposition. J Chem Soc. 1925;123:355–77.

    Google Scholar 

  31. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescud C, Sbirrazzuolie N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  32. Hostikka S, Matala A. Pyrolysis model for predicting the heat release rate of birch wood. Combust Sci Technol. 2017;189(8):1373–93.

    Article  CAS  Google Scholar 

  33. Yuen ACY, Chen TBY, Yeoh GH, Yang W, Cheung SCP, Cook M, Yu B, Chan QN, Yip HL. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci. 2018;36(6):494–517.

    Article  CAS  Google Scholar 

  34. Dong CQ, Zhang ZF, Lu Q, Yang YP. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers Manag. 2012;57:49–59.

    Article  CAS  Google Scholar 

  35. Maa Z, Chen D, Gu J, Bao B, Zhang Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag. 2015;89:251–9.

    Article  Google Scholar 

  36. Hagge MJ, Bryden KM, Dietenberger MA. Effects of backing board materials on wood combustion performance. Wood & fire safety: proceedings, 5th international scientific conference, April 18–22 2004, Faculty of Wood Sciences and Technology, pp. 51–58.

  37. Brown JE, Braun E, Twilley WH. Cone Calorimeter Evaluation of the Flammability of Composite Materials. US Department of Commerce, Center for Fire Research, March 1988.

  38. Zhang S, Ni X, Zhao M, Feng J, Zhang R. Numerical simulation of wood crib fire behavior in a confined space using cone calorimeter data. J Therm Anal Calorim. 2015;119:2291–303.

    Article  CAS  Google Scholar 

  39. Cachim PB, Franssen JM. Assessment of Eurocode 5 charring rate calculation methods. Fire Technol. 2010;46:169–81.

    Article  Google Scholar 

  40. Sarvaranta L, Kokkala M. Smoke production in fires. Espoo 1995, Technical Research Centre of Finland, VTT Tiedotteita - Meddelanden - Research Notes 1708; 32 p.

  41. Zhang J, Guo Y, Chen Q, Luo C. Kinetic analysis, solid residues and volatile products of pyrolyzing nomex insulation paper in nitrogen and air atmosphere. Fire Technol. 2022. https://doi.org/10.1007/s10694-022-01266-7.

    Article  Google Scholar 

  42. Gronli MG, Varhegyi G, Blasi CD. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41:4201–8.

    Article  CAS  Google Scholar 

  43. Yu J, Paterson N, Blamey J, Millan M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel. 2017;191:140–9.

    Article  CAS  Google Scholar 

  44. Ding Y, Ezekoye OA, Lu S, Wang C. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers Manag. 2016;120:370–7.

    Article  CAS  Google Scholar 

  45. Wild PJ, Uil HD, Johannes HR, Lunshof A, Hendriks C, Ernst RHE, Erik JH. Bioenergy II: biomass valorisation by a hybrid thermochemical fractionation approach. Int J Chem React Eng. 2009;A51(7):1–27.

    Google Scholar 

  46. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  PubMed  Google Scholar 

  47. Li KY, Huang X, Fleischmann C, Rein G, Ji J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuels. 2014;28(9):6130–9.

    Article  CAS  Google Scholar 

  48. Ding Y, Wang C, Chaos M, Chen R, Lu S. Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Biores Technol. 2016;200:658–65.

    Article  CAS  Google Scholar 

  49. Jancík J, Magdolenová P, Markert F. Comparison of cone calorimetry and FDS model of low-density fiberboard pyrolysis. In: Makovicka Osvaldova L, Markert F, Zelinka S, editors. Wood & fire safety. WFS 2020. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-41235-7_22.

    Chapter  Google Scholar 

  50. Ding Y, Fukumoto K, Ezekoye OA, Lu S, Wang C, Li C. Experimental and numerical simulation of multi-component combustion of typical charring material. Combust Flame. 2020;211:417–29.

    Article  CAS  Google Scholar 

  51. Jankovic B, Jankovic MM. Pyrolysis of pine and beech wood under isothermal conditions: the conventional kinetic approach. Res Chem Intermed. 2015;41(4):2201–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Centre for Safety Engineering at IIT Gandhinagar for support of this work. Support through Dr. Vilas Mujumdar Chair fellowship is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

DN carried out the experiments and related analysis. He also created the first draft of the manuscript. MKT carried out review of experimental and simulation results and helped in editing the drafts leading to the final version. TW carried out computer simulations and related analysis. GS conceptualized the overall study, methods and analyses. He also reviewed the manuscript drafts and finalized the manuscript being submitted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gaurav Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Tables 1013.

Table 10 \({E}_{\mathrm{a}}\) values (in kJ mol−1) for softwood (Region I) (α: 0.05–0.25) based on the model-fitting CR method
Table 11 Ea values (in kJ mol−1) for softwood (Region II) (α: 0.3–0.85) based on the model-fitting CR method
Table 12 Ea values (in kJ mol−1) for hardwood (Region I) (α: 0.05–0.40) based on the model-fitting CR method
Table 13 Ea values (in kJ mol−1) for hardwood (Region II) (α: 0.45–0.85) based on the model-fitting CR method

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakrani, D., Tiwari, M.K., Wani, T. et al. Characterization of combustion of hardwood and softwood through experimental and computer simulations. J Therm Anal Calorim 148, 7727–7745 (2023). https://doi.org/10.1007/s10973-023-12261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12261-7

Keywords

Navigation