Skip to main content
Log in

A review of numerical investigation on pool boiling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The rapid development of industrial technology and the increasing computational power have provided the possibility to improve the accuracy of multiphase flow field simulation studies. In addition, the chaotic nature of boiling phenomena increases the difficulty of experimental studies, and there is an urgent need to improve the computational methods to meet the needs of industrial applications. This paper presents a comprehensive review of the published literatures on the study of pool boiling using computational methods in the last two decades, including macroscopic-scale computational methods based on continuous medium theory, mesoscopic-scale methods based on lattice Boltzmann method (LBM), and nanoscale molecular dynamics. The advantages and disadvantages of different approaches to study bubble dynamics, including nucleation mechanisms, bubble growth, bubble detachment, and nucleation sites density, are evaluated based on different modeling features and phase change mechanisms. After considering micro-layer evaporation, wall convection, and transient conduction in the macroscopic scale model, the shape diffraction of isolated bubbles and departure diameters obtained by the macroscopic approach agree well with experimental data, and the Rensselaer Polytechnic Institute model achieves promising results for the simulation of low concentration nanofluids as well. The coupling of Shan–Chen model (S–C model) and Peng–Robinson (P–R) equation of state and considering the thermal lattice Boltzmann approach can effectively solve the phase separation problem, and the simulation results can match the theoretical analysis with the highest accuracy. In addition to the above results, a complete boiling heat transfer curve was successfully simulated for the first time using the LBM method. Molecular dynamics provides an in-depth mechanistic explanation of nucleation of nanobubbles in microstructures and on different wettability surfaces in terms of free energy and pressure fluctuations. Although different methods have achieved different degrees of success in pool boiling simulations, problems of boundary capture and heat and mass transfer near macroscopic methods, mesh accuracy in mesoscopic methods, treatment of density ratios and error terms, and accuracy of gas–liquid interfaces in molecular dynamics methods still limit the development of numerical computation. Therefore, this review also presents the challenges and future directions of simulation methods for modeling at different scales from the authors' perspective. Multi-scale coupling methods will be highlighted as an important goal to accommodate the development of advanced pool boiling simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

c s :

Lattice sound velocity

D :

Bubble departure diameter

E :

Specific internal energy

E ik :

Kinetic energy time average value

e i :

Lattice velocities

F :

Fraction of phase in computational cell

\(\overrightarrow {F}_{{\text{s}}}\) :

Force

\(f_{{\text{i}}}\) :

Discrete density distribution function

f i (eq) :

Equilibrium distribution function

H :

Heaviside function

h :

Cell width

g :

Gravitational acceleration

k :

Effective thermal conductivity

k B :

Boltzmann constant

M :

Orthogonal transformation matrix

p :

Pressure

Q :

Energy source term for energy equation

S :

Source term in thermal LB equation

T :

Temperature

t :

Time

\(\overrightarrow {u}\) :

Velocity vector

w i :

Weights

\(\alpha\) :

Non-dimensional parameter

β :

Weighting factor

ɛ :

Energy of interaction

\(\delta_{\mathrm {t}}\) :

Time step

ρ :

Density

\(\sigma\) :

Equilibrium distance

\(\tau_{\mathrm {f}}\) :

Relaxation time

μ :

Dynamic viscosity

φ :

Chemical potential

\(\psi\) :

Level-set function; effective mass

Λ:

Diagonal matrix

ALE:

Arbitrary Lagrange–Eulerian method

BGK:

Bhatnagar–Gross–Krook

CFD:

Computational fluid dynamics

CHF:

Critical heat flux

CML:

Coupled map lattice method

CLSVOF:

Coupled level-set and volume of fluid

CHARMM:

Chemistry at Harvard macromolecular mechanics

DVDWT:

The dynamic van der Waals theory

DnQm:

N Dimensional m velocity

EOS:

The equation of state

FTM:

Front tracking method

FLAIR:

Flux line-segment model for advection and interface reconstruction

GROMACS:

GROningen MAchine for Chemical Simulations

GROMOS:

GROningen MOlecular Simulation

HFP:

Heat flux partitioning

Kn:

Knudsen number

LAMMPS:

The large-scale atomic/molecular massively parallel simulator

LBM:

Lattice Boltzmann method

LS:

Level set

LJ:

Lennard–Jones

MAC:

Marker and cell method

MCMP:

Multiphase multicomponent

MD:

Molecular dynamic

MRT:

Multi-relaxation time

N–S:

Navier–Stokes

NVT:

Canonical ensemble

NVE:

Microcanonical ensemble

P–R:

Peng–Robinson

PFM:

Phase field method

PLIC:

Piecewise linear interface construction

RPI:

Rensselaer Polytechnic Institute

S–C:

Shan–Chen

SLIC:

Simple line interface calculation

SRT:

Single relaxation time

VOF:

Volume of fluid

VOSET:

Coupled volume of fluid and level set

2D:

Two dimensional

3D:

Three dimensional

References

  1. Mudawar I. Assessment of high-heat-flux thermal management schemes. IEEE Trans Comp Pack Man. 2001;24:122–41. https://doi.org/10.1109/6144.926375.

    Article  CAS  Google Scholar 

  2. Mudawar I. Two-phase microchannel heat sinks: theory, applications, and limitations. J Electron Packag. 2011;133:041002. https://doi.org/10.1115/1.4005300.

    Article  Google Scholar 

  3. Chu HQ, Yu XY, Jiang HT, Wang DD, Xu N. Progress in enhanced pool boiling heat transfer on macro-and micro-structured surfaces. Int J Heat Mass Transf. 2023;200:123530. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123530.

    Article  Google Scholar 

  4. Nukiyama S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf. 1966;9:1419–33. https://doi.org/10.1016/0017-9310(84)90112-1.

    Article  Google Scholar 

  5. Chu HQ, Yu BM. A new comprehensive model for nucleate pool boiling heat transfer of pure liquid at low to high heat fluxes including CHF. Int J Heat Mass Transf. 2009;52:4203–10. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.010.

    Article  CAS  Google Scholar 

  6. Sajjad U, Sadeghianjahromi A, Ali HM, Wang CC. Enhanced pool boiling of dielectric and highly wetting liquids-A review on surface engineering. Appl Therm Eng. 2021;195:117074. https://doi.org/10.1016/j.applthermaleng.2021.117074.

    Article  Google Scholar 

  7. Bergles AE. Some perspectives on enhanced heat transfer-second-generation heat transfer technology. J Heat Trans-T ASME. 1988;110:1082–96. https://doi.org/10.1115/1.3250612.

    Article  CAS  Google Scholar 

  8. Kim JM, Kim T, Yu DI, Kim MH, Moriyama K, Park HS. Time effect on wetting transition of smart surface and prediction of the wetting transition for critical heat flux in pool boiling. Int J Heat Mass Transf. 2017;114:735–42. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.114.

    Article  CAS  Google Scholar 

  9. Shen B, Hamazaki T, Ma W, Iwata N, Hidaka S, Takahara A, Takahashi K, Takata Y. Enhanced pool boiling of ethanol on wettability-patterned surfaces. Appl Therm Eng. 2019;149:325–31. https://doi.org/10.1016/j.applthermaleng.2018.12.049.

    Article  CAS  Google Scholar 

  10. Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Transf. 2014;71:189–96. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068.

    Article  Google Scholar 

  11. Yu XY, Xu N, Yu S, Han Y, Chu HQ. Effect of orthogonal channel structure on the heat transfer in pool boiling and its heat flux prediction model. Int J Therm Sci. 2023;187:108193. https://doi.org/10.1016/j.ijthermalsci.2023.108193.

    Article  Google Scholar 

  12. Deng D, Feng J, Huang Q, Tang Y, Lian Y. Pool boiling heat transfer of porous structures with reentrant cavities. Int J Heat Mass Transf. 2016;99:556–68. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.015.

    Article  CAS  Google Scholar 

  13. Ujereh S, Fisher T, Mudawar I. Effects of carbon nanotube arrays on nucleate pool boiling. Int J Heat Mass Transf. 2007;50:4023–38. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.030.

    Article  CAS  Google Scholar 

  14. Raj R, Kim J, Mcquillen J. Subcooled pool boiling in variable gravity environments. J Heat Trans-T ASME. 2009;131:091502. https://doi.org/10.1115/1.3122782.

    Article  CAS  Google Scholar 

  15. Raj R, Kim J. Heater size and gravity based pool boiling regime map: transition criteria between buoyancy and surface tension dominated boiling. J Heat Trans-T ASME. 2010;132:091503. https://doi.org/10.1115/1.4001635.

    Article  CAS  Google Scholar 

  16. Deng DX, Wan W, Feng JY, Huang QS, Qin Y, Xie YL. Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels. Appl Therm Eng. 2016;107:420–30. https://doi.org/10.1016/j.applthermaleng.2016.06.172.

    Article  CAS  Google Scholar 

  17. Liu Y, Tang JQ, Li LX, Shek YN, Xu DY. Design of Cassie-wetting nucleation sites in pool boiling. Int J Heat Mass Transf. 2019;32:25–33. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.146.

    Article  Google Scholar 

  18. Jo HS, Kim TG, Lee JG, Kim MW, Park HG, James SC, Choi J, Yoon SS. Supersonically sprayed nanotextured surfaces with silver nanowires for enhanced pool boiling. Int J Heat Mass Transf. 2018;123:397–406. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.092.

    Article  CAS  Google Scholar 

  19. Hayes A, Raghupathi PA, Emery TS, Kandlikar SG. Regulating Flow of Vapor to Enhance Pool Boiling. Appl Therm Eng. 2019;149:1044–51. https://doi.org/10.1016/j.applthermaleng.2018.12.091.

    Article  CAS  Google Scholar 

  20. Rohsenow WM, Griffith P. Correlation of maximum heat transfer data for boiling of saturated liquids. Chem Eng Prog. 1955;52:47–9.

    Google Scholar 

  21. Zuber N. Hydrodynamic aspects of boiling heat transfer. United States Atomic Energy Commission, Technical Information Service. 1959.

  22. Haramura Y, Katto Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged. Int J Heat Mass Transf. 1983;26:389–99. https://doi.org/10.1016/0017-9310(83)90043-1.

    Article  Google Scholar 

  23. Yagov VV. A physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids. Therm Eng. 1988;35:333–9.

    Google Scholar 

  24. Mudawar I, Howard AH, Gersey CO. An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces. Int J Heat Mass Transf. 1997;40:2327–39. https://doi.org/10.1016/S0017-9310(96)00298-0.

    Article  CAS  Google Scholar 

  25. Utaka Y, Nakamura K, Sakurai A, Itagaki K, Sonoda A. Configuration of microlayer in nucleate boiling. Trans Jpn Soc Mech Eng. 2008;74:2358–64.

    Article  Google Scholar 

  26. Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. Int J Heat Mass Transf. 2013;57:222–30. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.031.

    Article  CAS  Google Scholar 

  27. Utaka Y, Kashiwabara Y, Ozaki M, Chen Z. Heat transfer characteristics based on microlayer structure in nucleate pool boiling for water and ethanol. Int J Heat Mass Transf. 2014;68:479–88. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.063.

    Article  CAS  Google Scholar 

  28. Kossolapov A, Phillips B, Bucci M. Can LED lights replace lasers for detailed investigations of boiling phenomena? Int J Multiphase Flow. 2021;135:103522. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103522.

  29. Lee RC, Nyadhl JE. Numerical Calculation of Bubble Growth in Nucleate Boiling from inception to departure. J Heat Trans-T ASME. 1989;111:474–9. https://doi.org/10.1115/1.3250701.

    Article  CAS  Google Scholar 

  30. Mei R, Chen W, Klausner JF. Vapor Bubble Growth in Heterogeneus Boiling- II. Growth Rate and Thermal Fileds. Int J Heat Mass Transf. 1995;38;921–934. https://doi.org/10.1016/0017-9310(94)00196-3.

  31. Welch SWJ. Direct Simulation of Vapor Bubble Growth. Int J Heat and Mass Transf. 1998;41:1655–66. https://doi.org/10.1016/S0017-9310(97)00285-8.

    Article  CAS  Google Scholar 

  32. Son G, Dhir VK, Ramanujapu N. Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a horizontal surface. J Heat Trans-T ASME. 1999;121:623–31. https://doi.org/10.1115/1.2826025.

    Article  CAS  Google Scholar 

  33. Abarajith HS. Numerical Prediction and Experimental Validation of Pool Nucleate Boiling Heat Flux Under Variable Gravity Conditions. United States: Thesis;2006.

  34. Dhir VK. Mechanistic prediction of nucleate boiling heat transfer-achievable or a hopeless task? J Heat Trans-T ASME. 2006;128:1–12. https://doi.org/10.1115/1.2136366.

    Article  CAS  Google Scholar 

  35. Kunugi T. Brief review of latest direct numerical simulation on pool and film boiling. Nucl Eng Technol. 2012;44(8):847–54. https://doi.org/10.5516/NET.02.2012.717.

    Article  CAS  Google Scholar 

  36. Dhir VK, Warrier GR, Aktinol E. Numerical simulation of pool boiling: a review. J Heat Trans-T ASME. 2013;135:061502. https://doi.org/10.1115/1.4023576.

  37. Dhir V K. Advances in Understanding of Pool Boiling Heat Transfer-From Earth on to Deep Space. J Heat Trans-T ASME. 2019;141:050802. https://doi.org/10.1115/1.4043282.

  38. Li Q, Luo KH, Kang QJ, He YL, Chen Q, Liu Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energ Combust. 2016;52:62–105. https://doi.org/10.1016/j.pecs.2015.10.001.

    Article  CAS  Google Scholar 

  39. Kharangate CR, Mudawar I. Review of computational studies on boiling and condensation. Int J Heat Mass Transf. 2017;108:1164–96. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.065.

    Article  CAS  Google Scholar 

  40. Dadhich M, Prajapati OS. A brief review on factors affecting flow and pool boiling. Renew Sust Energ Rev. 2019;112:607–25. https://doi.org/10.1016/j.rser.2019.06.016.

    Article  CAS  Google Scholar 

  41. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluid. 1996;8:2182–9. https://doi.org/10.1063/1.1761178.

    Article  Google Scholar 

  42. Madhavan S, Mesler B. A Study of Vapor bubble growth on surfaces. Int Heat Transf Conf. 1970;4.

  43. Takagi S. Three-dimensional deformation of a rising bubble. In Proc. German-Japanese Symp. on Multi-Phase Flow. 1994;499.

  44. Hirt CW, Amsden AA, Cook JL. An arbitrary lagrangian-eulerian computing method for all speeds. J Comput Phys. 1974;14:227–53. https://doi.org/10.1016/0021-9991(74)90051-5.

    Article  Google Scholar 

  45. Hughes TJR, Liu WK, Zimmermann TK. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Method Appl M. 1981;29:329–49. https://doi.org/10.1016/0045-7825(81)90049-9.

    Article  Google Scholar 

  46. Donea J, Giuliani S, Halleux JP. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction. Comput Method Appl M. 1982;33:689–723. https://doi.org/10.1016/0045-7825(82)90128-1.

    Article  Google Scholar 

  47. Belytschko TB, Kennedy JM. Computer models for subassembly simulation. Nucl Eng Des. 1978;49:7–38. https://doi.org/10.1016/0029-5493(78)90049-3.

    Article  Google Scholar 

  48. Belytschko T, Kennedy JM, Schoeberle DF. Quasi-Eulerian finite element formulation for fluid-structure interaction. J Press Vess-T ASME. 1980;102:62–9. https://doi.org/10.1115/1.3263303.

    Article  CAS  Google Scholar 

  49. Chern IL, Glimm J, McBryan O, Plohr B, Yaniv S. Front tracking for gas dynamics. J Comput Phys. 1986;62:83–110. https://doi.org/10.1016/0021-9991(86)90101-4.

    Article  Google Scholar 

  50. Glimm J, Grove JW, Li XL, Oh W, Sharp DH. A critical analysis of Rayleigh-Taylor growth rates. J Comput Phys. 2001;169:652–77. https://doi.org/10.1006/jcph.2000.6590.

    Article  CAS  Google Scholar 

  51. Marshall G. A front tracking method for one-dimensional moving boundary problems. SIAM J Sci Stat Comput. 1986;7:252–63. https://doi.org/10.1137/0907017.

    Article  Google Scholar 

  52. Charrier P, Tessieras B. On front-tracking methods applied to hyperbolic systems of nonlinear conservation laws. SIAM J Numer Anal. 1986;23:461–72. https://doi.org/10.1137/0723031.

    Article  Google Scholar 

  53. Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys. 1992;100:25–37. https://doi.org/10.1016/0021-9991(92)90307-K.

    Article  Google Scholar 

  54. Unverdi SO, Tryggvason G. Computations of multi-fluid flows. Physica D. 1992;60:70–83. https://doi.org/10.1016/0167-2789(92)90227-E.

    Article  Google Scholar 

  55. Esmaeeli A, Tryggvason G. Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays. J Fluid Mech. 1998;377:313–345. https://doi.org/10.1017/S0022112098003176.

  56. Esmaeeli A, Tryggvason G. Direct numerical simulations of bubbly flows Part 2. Moderate Reynolds number arrays. J Fluid Mech. 1999;385:325–358. https://doi.org/10.1017/S0022112099004310.

  57. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39:201–25. https://doi.org/10.1016/0021-9991(81)90145-5.

    Article  Google Scholar 

  58. Rudman M. Volume-tracking methods for interfacial flow calculations. Int J Numer Meth Fluids. 1997;24:671–91. https://doi.org/10.1002/(SICI)1097-0363.

    Article  CAS  Google Scholar 

  59. Ubbink O, Issa RI. A method for capturing sharp fluid interfaces on arbitrary meshes. J Comput Phys. 1999;153:26–50. https://doi.org/10.1006/jcph.1999.6276.

    Article  Google Scholar 

  60. Noh WF, Woodward P. SLIC (simple line interface calculation). In: Lecture notes in physics, Springer, New York. 1976;59:330–340.

  61. Youngs DL. Time-dependent multi-material flow with large fluid distortion. Numer Meth Fluid. 1982;24:273–85.

    Google Scholar 

  62. Ashgriz N, Poo JY. FLAIR: Flux line-segment model for advection and interface reconstruction. J Comput Phys. 1991;93:449–68. https://doi.org/10.1016/0021-9991(91)90194-P.

    Article  CAS  Google Scholar 

  63. Price GR, Reader GT, Rowe RD, Bugg JD. A piecewise parabolic interface calculation for volume tracking. in: Proceedings of the Sixth Annual Conference of CFD Society of Canada 1998:71–77.

  64. Ginzburg I, Wittum G. Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants. J Comput Phys. 2001;166:302–35. https://doi.org/10.1006/jcph.2000.6655.

    Article  CAS  Google Scholar 

  65. Mukherjee A, Dhir VK. Study of lateral merger of vapor during nucleate pool boiling. J Heat Trans-T ASME. 2004;126:1023–39. https://doi.org/10.1115/1.1834614.

    Article  CAS  Google Scholar 

  66. Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flows. J Comput Phys. 1994;114:146–59. https://doi.org/10.1006/jcph.1994.1155.

    Article  Google Scholar 

  67. Son G, Dhir VK. Numerical simulation of film boiling near critical pressures with a level-set method. J Heat Trans-T ASME. 1998;120:183–92. https://doi.org/10.1115/1.2830042.

    Article  CAS  Google Scholar 

  68. Sun DL, Tao WQ. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. Int J Heat Mass Transf. 2010;53:645–55. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.030.

    Article  Google Scholar 

  69. Ling K, Li ZY, Tao WQ. A direct numerical simulation for nucleate boiling by the VOSET method. Numer Heat Tr A-Appl. 2014;65:949–71. https://doi.org/10.1080/10407782.2013.850971.

    Article  CAS  Google Scholar 

  70. Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys. 2000;162:301–37. https://doi.org/10.1006/jcph.2000.6537.

    Article  CAS  Google Scholar 

  71. Antanovskii LK. A phase field model of capillarity. Phys Fluid. 1995;7:747–53. https://doi.org/10.1063/1.868598.

    Article  CAS  Google Scholar 

  72. Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys. 1999;155:96–127. https://doi.org/10.1006/jcph.1999.6332.

    Article  Google Scholar 

  73. Jing Y, Guo L, Zhang X. A numerical simulation of pool boiling using CAS model. Int J Heat Mass Transf. 2003;46:4789–97. https://doi.org/10.1016/S0017-9310(03)00353-3.

    Article  CAS  Google Scholar 

  74. He Y, Shoji M, Maruyama S. Numerical Study of high heat flux pool boiling heat transfer. Int J Heat Mass Transf. 2001;44:2357–73. https://doi.org/10.1016/S0017-9310(00)00269-6.

    Article  CAS  Google Scholar 

  75. Kaneko K. Theory and Applications of Coupled Map Lattices. Chichester: Chichester John Wiley and Sons; 1993.

    Google Scholar 

  76. Yanagita T. Phenomenology for Boiling: A Coupled Map Lattice Model. Chaos. 1992;2:343–50. https://doi.org/10.1063/1.165877.

    Article  PubMed  Google Scholar 

  77. Laurila T, Carlson A, Do-Quang M, Ala-Nissila Y, Amberg G. Thermohydrodynamics of boiling in a van der Waals fluid. Phys Rev E. 2012;85:026320. https://doi.org/10.1103/PhysRevE.85.026320.

  78. Xu X, Liu C, Qian T. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates. Commun Math Sci. 2012;10:1027–53. https://doi.org/10.4310/CMS.2012.v10.n4.a1.

    Article  Google Scholar 

  79. Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Oxford University Press; 2001.

    Google Scholar 

  80. Chen S, Chen H, Martnez D, Matthaeus W. Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys Rev Lett. 1991;67:3776–9. https://doi.org/10.1103/PhysRevLett.67.3776.

    Article  CAS  PubMed  Google Scholar 

  81. Qian YH, d’Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett. 1992;17:479–84. https://doi.org/10.1209/0295-5075/17/6/001.

    Article  Google Scholar 

  82. Swift MR, Osborn WR, Yeomans JM. Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett. 1995;75:830–3. https://doi.org/10.1103/PhysRevLett.75.830.

    Article  CAS  PubMed  Google Scholar 

  83. Swift MR, Orlandini E, Osborn WR, Yeomans JM. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys Rev E. 1996;54:5041–52. https://doi.org/10.1103/PhysRevE.54.5041.

    Article  CAS  Google Scholar 

  84. Inamuro T, Konishi N, Ogino F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput Phys Commun. 2000;129:32–45. https://doi.org/10.1016/S0010-4655(00)00090-4.

    Article  CAS  Google Scholar 

  85. He X, Chen S, Zhang R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys. 1999;152:642–63. https://doi.org/10.1006/jcph.1999.6257.

    Article  CAS  Google Scholar 

  86. Li Q, Luo KH, Gao YJ, He YL. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys Rev E. 2012;85:026704. https://doi.org/10.1103/PhysRevE.85.026704.

  87. Liu H, Valocchi AJ, Zhang Y, Kang Q. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys Rev E. 2013;87:013010. https://doi.org/10.1103/PhysRevE.87.013010.

  88. Shi Y, Tang GH. Simulation of Newtonian and non-Newtonian rheology behavior of viscous fingering in channels by the lattice Boltzmann method. Comput Math Appl. 2014;68:1279–91. https://doi.org/10.1016/j.camwa.2014.08.024.

    Article  Google Scholar 

  89. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids. Phys Rev A. 1991;43:4320–7. https://doi.org/10.1103/PhysRevA.43.4320.

    Article  CAS  PubMed  Google Scholar 

  90. Grunau D, Chen S, Eggert K. A lattice Boltzmann model for multiphase fluid flows. Phys Fluids A. 1993;5:2557–62. https://doi.org/10.1063/1.858769.

    Article  CAS  Google Scholar 

  91. Reis T, Phillips TN. Lattice Boltzmann model for simulating immiscible two-phase flows. J Phys A-Math Theor. 2007;40:4033. https://doi.org/10.1088/1751-8113/40/14/018.

    Article  CAS  Google Scholar 

  92. Liu H, Valocchi AJ, Kang Q. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys Rev E. 2012;85:046309. https://doi.org/10.1103/PhysRevE.85.046309.

  93. Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E. 1993;47:1815–20. https://doi.org/10.1103/PhysRevE.47.1815.

    Article  CAS  Google Scholar 

  94. Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E. 1994;49:2941. https://doi.org/10.1103/PhysRevE.49.2941.

    Article  CAS  Google Scholar 

  95. Falcucci G, Bella G, Shiatti G, Chibbaro S, Sbragaglia M, Succi S. Lattice Boltzmann models with mid-range interactions. Commun Comput Phys. 2007;2:1071–84.

    Google Scholar 

  96. Yu Z, Fan L-S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Phys Rev E. 2010;82:046708. https://doi.org/10.1103/PhysRevE.82.046708.

  97. Li Q, Luo KH, Li XJ. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys Rev E. 2013;87:053301. https://doi.org/10.1103/PhysRevE.87.053301.

  98. Dou S, Hao L, Liu H. Numerical study of bubble behaviors and heat transfer in pool boiling of water/NaCl solutions using the lattice Boltzmann method. Int J Therm Sci. 2021;170:107158. https://doi.org/10.1016/j.ijthermalsci.2021.107158.

  99. Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Phys Fluids. 2006;18:042101. https://doi.org/10.1063/1.2187070.

  100. Zhang R, Chen H. Lattice Boltzmann method for simulations of liquid-vapor thermal flows. Phys Rev E. 2003;67:066711. https://doi.org/10.1103/PhysRevE.67.066711.

  101. Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput Fluids. 2012;53:93–104. https://doi.org/10.1016/j.compfluid.2011.09.013.

    Article  Google Scholar 

  102. Zeng J, Li L, Liao Q, Cui W, Chen Q, Pan L. Simulation of phase transition process using lattice Boltzmann method. Chinese Sci Bull. 2009;54:4596–603. https://doi.org/10.1007/s11434-009-0734-x.

    Article  CAS  Google Scholar 

  103. Li Q, Luo KH, Li XJ. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys Rev E. 2012;86:016709. https://doi.org/10.1103/PhysRevE.86.016709.

  104. Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Phys Rev E. 2021;103:053302. https://doi.org/10.1103/PhysRevE.103.053302.

  105. Martys NS, Chen H. Simulation of multicomponent fluids in complex three dimensional geometries by the lattice Boltzmann method. Phys Rev E. 1996;53:743–50. https://doi.org/10.1103/PhysRevE.53.743.

    Article  CAS  Google Scholar 

  106. Gong S, Cheng P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int J Heat Mass Transf. 2012;55:4923–7. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.037.

    Article  CAS  Google Scholar 

  107. Chen L, Kang QJ, Mu YT, He YL, Tao WQ. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int J Heat and Mass Transf. 2014;76:210–36. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032.

    Article  CAS  Google Scholar 

  108. Gong S, Cheng P, Quan X. Lattice Boltzmann simulation of droplet formation in microchannels under an electric field. Int J Heat Mass Transf. 2010;53:5863–70. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.057.

    Article  CAS  Google Scholar 

  109. Hazi G, Markus A. On the bubble departure diameter and release frequency based on numerical simulation results. Int J Heat Mass Transf. 2009;52:1472–80. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.003.

    Article  CAS  Google Scholar 

  110. Márkus A, Házi G. Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: a quantitative analysis. Phys Rev E. 2011;83:046705. https://doi.org/10.1103/PhysRevE.83.046705.

  111. Biferale L, Perlekar P, Sbragaglia M, Toschi F. Convection in multiphase fluid flows using lattice Boltzmann methods. Phys Rev Lett. 2012;108:104502. https://doi.org/10.1103/PhysRevLett.108.104502.

  112. Gong S, Cheng P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int J Heat Mass Transf. 2013;64:122–32. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058.

    Article  Google Scholar 

  113. Liu X, Cheng P. Lattice Boltzmann simulation of steady laminar film condensation on a vertical hydrophilic subcooled flat plate. Int J Heat Mass Transf. 2013;62:507–14. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.002.

    Article  Google Scholar 

  114. Kamali MR, Gillissen JJJ, Van den Akker HEA, Sundaresan S. Lattice Boltzmann based two-phase thermal model for simulating phase change. Phys Rev E. 2013;88:033302. https://doi.org/10.1103/PhysRevE.88.033302.

  115. Miyagawa H, Kitamura K. An Introduction of Molecular Dynamics Simulation. J Synth Org Chem Jpn. 1997;55:402–9.

    Article  CAS  Google Scholar 

  116. Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99:1129–43. https://doi.org/10.1016/j.neuron.2018.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haile JM, Johnston I, Mallinckrodt AJ, McKay S. Molecular Dynamics Simulation: Elementary Methods. Comput Phys. 1993;7:625. https://doi.org/10.1063/1.4823234.

    Article  Google Scholar 

  118. Giovanni C, Ryckaert JP. Molecular dynamics simulation of rigid molecules. Comput Phys Re. 1986;4:346–92. https://doi.org/10.1016/0167-7977(86)90022-5.

    Article  Google Scholar 

  119. Van der Ploeg P, Berendsen HJC. Molecular dynamics simulation of a bilayer membrane. J Chem Phys. 1982;76:3271–3271. https://doi.org/10.1063/1.443321.

    Article  Google Scholar 

  120. Grest G, Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev. 1986;33:3628–31. https://doi.org/10.1103/PhysRevA.33.3628.

    Article  CAS  Google Scholar 

  121. Raghupathi PA, Kandlikar SG, Pool boiling enhancement through contact line augmentation. Appl Phys Lett. 2017;110:204101. https://doi.org/10.1063/1.4983720.

  122. Kim JS, Girard A, Jun S, Lee J, You SM. Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. Int J Heat Mass Transf. 2018;118:802–11. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124.

    Article  CAS  Google Scholar 

  123. O’Hanley H, Coyle C, Buongiorno J, McKrell T, Hu LW, Rubner M, Cohen R. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Appl Phys Lett. 2013;103:024102. https://doi.org/10.1063/1.4813450.

  124. Fan SM, Jiao LS, Wang K, Duan F. Pool boiling heat transfer of saturated water on rough surfaces with the effect of roughening techniques. Int J Heat Mass Transf. 2020;159:120054. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120054.

  125. Xu ZG, Zhao CY. Thickness effect on pool boiling heat transfer of trapezoid shaped copper foam fins. Appl Therm Eng. 2013;60:359–70. https://doi.org/10.1016/j.applthermaleng.2013.07.013.

    Article  CAS  Google Scholar 

  126. Xu ZG, Zhao CY. Pool boiling heat transfer of open-celled metal foams with V-shaped grooves for high pore densities. Exp Therm Fluid Sci. 2014;52:128–38. https://doi.org/10.1016/j.expthermflusci.2013.09.003.

    Article  CAS  Google Scholar 

  127. Xu ZG, Zhao CY. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions. Appl Therm Eng. 2016;100:68–77. https://doi.org/10.1016/j.applthermaleng.2016.02.016.

    Article  CAS  Google Scholar 

  128. Xu ZG, Zhao CY. Experimental study on pool boiling heat transfer in gradient metal foams. Int J Heat Mass Transf. 2015;85:824–9. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.017.

    Article  CAS  Google Scholar 

  129. Yu ck, Lu DC. Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72. Int J Heat Mass Transf. 2007;50:3624–3637. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.003.

  130. Zhong D, Meng J, Li Z, Guo Z. Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces. Int J Heat Mass Transf. 2015;87:201–11. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.001.

    Article  Google Scholar 

  131. Jiang HT, Yu XY, Xu N, Wang DD, Yang J, Chu HQ. Effect of T-shaped micro-fins on pool boiling heat transfer performance of surfaces. Exp Therm Fluid Sci. 2022;136:110663. https://doi.org/10.1016/j.expthermflusci.2022.110663.

  132. Hao W, Wang T, Jiang YY, Guo C, Guo CH. Pool boiling heat transfer on deformable structures made of shape-memory-alloys. Int J Heat Mass Transf. 2017;112:236–47. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.113.

    Article  CAS  Google Scholar 

  133. Wang T, Jiang YY, Jiang HC, Guo C, Guo CH, Tang DW, Rong LJ. Surface with recoverable mini structures made of shape-memory alloys for adaptive-control of boiling heat transfer. Appl Phys Lett. 2015;107:023904. https://doi.org/10.1063/1.4926987.

  134. Chibowski E. Surface free energy of a solid from contact angle hysteresis. Adv Colloid Interface. 2003;103(2):149–72. https://doi.org/10.1016/S0001-8686(02)00093-3.

    Article  CAS  Google Scholar 

  135. Verlet L. Computer, “Experiments” on Classical Fluids I Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev. 1967;159:98–103. https://doi.org/10.1103/PhysRev.159.98.

    Article  CAS  Google Scholar 

  136. Swope WC, Andersen HC. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J Chem Phys. 1982;76:637–49. https://doi.org/10.1063/1.442716.

    Article  CAS  Google Scholar 

  137. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985;31:1695–7. https://doi.org/10.1103/PhysRevA.31.1695.

    Article  CAS  PubMed  Google Scholar 

  138. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90. https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  139. Schneider T, Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B. 1978;17:1302. https://doi.org/10.1103/PhysRevB.17.1302.

    Article  CAS  Google Scholar 

  140. Surblys D, Matsubara H, Kikugawa G, Ohara T. Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. Phys Rev E. 2019;99:051301. https://doi.org/10.1103/PhysRevE.99.051301.

  141. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. https://doi.org/10.1006/jcph.1995.1039.

    Article  CAS  Google Scholar 

  142. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74. https://doi.org/10.1002/jcc.20035.

    Article  CAS  PubMed  Google Scholar 

  143. Lindahl E, Hess B, David VDS. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Ann. 2001;7:306–317. https://doi.org/10.1007/s008940100045.

  144. Zhu X, Lopes PE Jr, MK. Recent developments and applications of the CHARMM force fields. Wiley Interdis Rev: Comput Mol Sci. 2012;2:167–85. https://doi.org/10.1002/wcms.74.

    Article  CAS  Google Scholar 

  145. Chandrasekhar I, Bakowies D, Glättli A, Hünenberger P, Pereira C, Gunsteren WFN. Molecular dynamics simulation of lipid bilayers with GROMOS96:application of surface tension. Mol Simul. 2005;31:543–548. https://doi.org/10.1080/08927020500134243.

  146. Cooper MG, Lloyd AJP. The microlayer in nucleate pool boiling. Int J Heat Mass Transf. 1969;12:895–913. https://doi.org/10.1016/0017-9310(69)90154-9.

    Article  CAS  Google Scholar 

  147. Judd RL, Hwang KS. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. J Heat Trans-T ASME. 1976;98:623–9. https://doi.org/10.1115/1.3450610.

    Article  CAS  Google Scholar 

  148. Son G, Ramanujapu N, Dhir VK. Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling. J Heat Trans-T ASME. 2002;124:51–61. https://doi.org/10.1115/1.1420713.

    Article  CAS  Google Scholar 

  149. Sato Y, Niceno B. A depletable micro-layer model for nucleate pool boiling. J Comput Phys. 2015;300:20–52. https://doi.org/10.1016/j.jcp.2015.07.046.

    Article  CAS  Google Scholar 

  150. Sato Y, Ničeno B. A sharp-interface phase change model for a mass-conservative interface tracking method. J Comput Phys. 2013;249:127–61. https://doi.org/10.1016/j.jcp.2013.04.035.

    Article  CAS  Google Scholar 

  151. Jia HW, Zhang P, Fu X, Jiang SC. A numerical investigation of nucleate boiling at a constant surface temperature. Appl Therm Eng. 2015;88:248–57. https://doi.org/10.1016/j.applthermaleng.2014.09.022.

    Article  Google Scholar 

  152. Mobli M, Bayat M, Li C. Estimating bubble interfacial heat transfer coefficient in pool boiling. J Mol Liq. 2022;350:118541. https://doi.org/10.1016/j.molliq.2022.118541.

  153. Salehi A, Mortazavi S, Amini M. A numerical study of heat transfer in saturated nucleate pool boiling process: a new analysis based on the inherent physics. Acta Mech. 2022;233:3601–22. https://doi.org/10.1007/s00707-022-03290-8.

    Article  Google Scholar 

  154. Inamuro T, Ogata T, Ogino F. Numerical simulation of bubble flows by the Lattice Boltzmann method. Future Gener Comp Sy. 2004;20:959–64. https://doi.org/10.1016/j.future.2003.12.008.

    Article  Google Scholar 

  155. Inamuro T, Ogata T, Tajima S, Konishi N. A Lattice Boltzmann method for incompressible two-phase flows with large density differences. J Comput Phys. 2004;198:628–44. https://doi.org/10.1016/j.jcp.2004.01.019.

    Article  Google Scholar 

  156. Inamuro T, Ogata T, Ogino F. Lattice Boltzmann simulation of droplet collision dynamics. Int J Heat Mass Transf. 2004;47:4649–57. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.030.

    Article  Google Scholar 

  157. Sakakibara B, Inamuro T. Lattice Boltzmann simulation of collision dynamics of two unequal-size droplets. Int J Heat Mass Transf. 2008;51:3207–3216.https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.004.

  158. Dong Z, Li W, Song Y. A numerical investigation of bubble growth on and departure from a superheated wall by lattice Boltzmann method. Int J Heat Mass Transf. 2010;53:4908–16. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.001.

    Article  Google Scholar 

  159. Zheng HW, Shu C, Chew YT. A lattice Boltzmann for multiphase flows with large density ratio. J Comput Phys. 2006;218:353–71. https://doi.org/10.1016/j.jcp.2006.02.015.

    Article  CAS  Google Scholar 

  160. Safari H, Rahimian MH, Krafczyk M. Extended lattice Boltzmann method for numericalsimulation of thermal phase change in two-phase fluid flow. Phys Rev E. 2013;88:013304. https://doi.org/10.1103/PhysRevE.88.013304.

  161. Begmohammadi A, Farhadzadeh M, Rahimian MH. Simulation of pool boiling and periodic bubble release at high density ratio using lattice Boltzmann method. Int Commun Heat Mass Transf. 2015;61:78–87. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.018.

    Article  Google Scholar 

  162. Sun T, Li W, Yang S. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method. Int J Heat Fluid Flow. 2013;44:120–9. https://doi.org/10.1016/j.ijheatfluidflow.2013.05.003.

    Article  Google Scholar 

  163. Sun T, Li W. Three-dimensional numerical simulation of nucleate boiling bubble by lattice Boltzmann method. Comput Fluids. 2013;88:400–9. https://doi.org/10.1016/j.compfluid.2013.10.009.

    Article  Google Scholar 

  164. Sun T. A numerical study on dynamics behaviors of multi bubbles merger during nucleate boiling by lattice Boltzmann method. Int J Multiphase Flow. 2019;118:128–40. https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.011.

    Article  CAS  Google Scholar 

  165. Yuan J, Ye X, Shan Y. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling. Int J Multiphase Flow. 2021;142:103701. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103701.

  166. Maruyama S, Kimura T. A molecular dynamics simulation of a bubble nucleation on solid surface. Trans Japan Soci Mech Engi Series B. 1999;65:3461–7. https://doi.org/10.1299/kikaib.65.3461.

    Article  Google Scholar 

  167. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100:335–54. https://doi.org/10.1016/0021-9991(92)90240-Y.

    Article  CAS  Google Scholar 

  168. Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G. Modelling merging and fragmentation in multiphase flows with SURFER. J Comput Phys. 1994;11:134–47. https://doi.org/10.1006/jcph.1994.1123.

    Article  Google Scholar 

  169. Li Q, Luo KH, Kang QJ, Chen Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys Rev E. 2014;90:053301. https://doi.org/10.1103/PhysRevE.90.053301.

  170. Chen Y, Zou Y, Yu B, Sun D, Chen X. Effects of surface wettability on rapid boiling and bubble nucleation: a molecular dynamics study. Nanosc Microsc Therm. 2018;22:198–212. https://doi.org/10.1080/15567265.2018.1475526.

    Article  CAS  Google Scholar 

  171. Mukherjee A, Kandlikar SG. Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling. Int J Heat Mass Transf. 2007;50:127–38. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.037.

    Article  Google Scholar 

  172. Ding W, Krepper E, Hampel U. Evaluation of the microlayer contribution to bubble growth in horizontal pool boiling with a mechanistic model that considers dynamic contact angle and base expansion. Int J Heat Fluid Flow. 2018;72:274–87. https://doi.org/10.1016/j.ijheatfluidflow.2018.06.009.

    Article  Google Scholar 

  173. Huber G, Tanguy S, Sagan M, Colin C. Direct numerical simulation of nucleate pool boiling at large microscopic contact angle and moderate Jakob number. Int J Heat Mass Transf. 2017;113:662–82. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.083.

    Article  CAS  Google Scholar 

  174. Li M, Bolotnov IA. The evaporation and condensation model with interface tracking. Int J Heat and Mass Transf. 2020;150:119256. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119256.

  175. Li MN, Moortgat J, Bolotno I. Nucleate boiling simulation using interface tracking method. Nucl Eng Des. 2020;369:110813. https://doi.org/10.1016/j.nucengdes.2020.110813.

  176. Hsu HY, Lin MC, Popovic B, Lin CR, Patankar NA. A numerical investigation of the effect of surface wettability on the boiling curve. PLoS ONE. 2017;12:0187175. https://doi.org/10.1371/journal.pone.0187175.

    Article  CAS  Google Scholar 

  177. Kandlikar SG. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J Heat Trans-T ASME. 2001;123:1071–9. https://doi.org/10.1115/1.1409265.

    Article  CAS  Google Scholar 

  178. Kutateladze SS. On the transition to film boiling under natural convection. Kotloturbostroenie. 1948;3:10–2.

    Google Scholar 

  179. Lin CW, Lin YC, Hung T, Lin MC, Hsu HY. A numerical investigation of the superbiphilic surface on the boiling curve using the volume of fluid method. Int J Heat Mass Transf. 2021;171:121058. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121058.

  180. Kistler SF. Hydrodynamics of wetting. New York: Marcel-Dekker; 1993.

    Google Scholar 

  181. Vontas K, Andredaki M, Georgoulas A, Nikas KS, Marengo M. Numerical investigation of droplet impact on smooth surfaces with different wettability characteristics: Implementation of a dynamic contact angle treatment in OpenFOAM. Proceedings of ILASS-Europe. 2017:58–65. https://doi.org/10.4995/ilass2017.2017.5020.

  182. Pontes P, Cautela R, Teodori E, Moita AS, Georgoulas A, Moreira ALNM. Bubble Dynamics and Heat Transfer on Biphilic Surfaces: Experiments and Numerical Simulation. J Bionic Eng. 2020;17:1–13. https://doi.org/10.1007/s42235-020-0064-x.

    Article  Google Scholar 

  183. Freitas E, Pontes P, Cautela R, Bahadur V, Miranda J, Ribeiro A, Souza RR, Oliveira JD, Copetti JB, Lima R, Pereira JE, Moreira ALN, Moita AS. Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study. Nanomaterials. 2021;11:125. https://doi.org/10.3390/nano11010125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li Y, Li Y, Jiao W, Chen XQ, Lu G. Manipulating the heat transfer of pool boiling by tuning the bubble dynamics with mixed wettability surfaces. Int J Heat Mass Transf. 2021;170:120996. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120996.

  185. Lee WH. A pressure iteration scheme for two-phase flow modeling. Multiphase Transport Fundamentals, Reactor Safety, Applications. Washington DC: Hemisphere Publishing;1980.

  186. Georgoulas A, Koukouvinis P, Gavaises M, Marengo M. Numerical investigation of quasi-static bubble growth and detachment from submerged orifices in isothermal liquid pools: The effect of varying fluid properties and gravity levels. Int J Multiphase Flow. 2015;74:59–78. https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.008.

    Article  CAS  Google Scholar 

  187. Georgoulas A, Andredaki M, Marengo M. An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble Detachment in Saturated Pool Boiling. Energies. 2017;10:272. https://doi.org/10.3390/en10030272.

    Article  CAS  Google Scholar 

  188. Gong S, Cheng P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int J Heat Mass Transf. 2015;80:206–16. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.092.

    Article  Google Scholar 

  189. Gong S, Cheng P. Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer. Int J Heat Mass Transf. 2015;85:635–46. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.008.

    Article  Google Scholar 

  190. Lee JS, Lee JS. Critical heat flux enhancement of pool boiling with adaptive fraction control of patterned wettability. Int J Heat Mass Transf. 2016;96:504–12. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.044.

    Article  Google Scholar 

  191. Lee JS, Lee JS. Numerical study of hydrophobic-island shapes with patterned wettability for pool boiling. Appl Therm Eng. 2017;127:1632–41. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.044.

    Article  Google Scholar 

  192. Lee JS, Lee JS. Numerical approach to the suppression of film boiling on hot-spots by radial control of patterned wettability. Int J Multiphase Flow. 2016;84:165–75. https://doi.org/10.1016/j.ijmultiphaseflow.2016.04.021.

    Article  CAS  Google Scholar 

  193. Lee JS, Lee JS. Conjugate heat transfer analysis for the effect of the eccentricity of hydrophobic dot arrays on pool boiling. Appl Therm Eng. 2017;110:844–54. https://doi.org/10.1016/j.applthermaleng.2016.08.209.

    Article  CAS  Google Scholar 

  194. Zhang CY, Cheng P, Hong FJ. Mesoscale simulation of heater size and subcooling effects on pool boiling under controlled wall heat flux conditions. Int J Heat Mass Transf. 2016;101:1331–42. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.036.

    Article  CAS  Google Scholar 

  195. Zhang CY, Cheng P. Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions. Int J Heat Mass Transf. 2017;11:319–29. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.039.

    Article  Google Scholar 

  196. Mu YT, Chen L, He YL, Kang QJ, Tao WQ. Nucleate boiling performance evaluation of cavities at mesoscale level. Int J Heat Mass Transf. 2016;106:708–19. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.058.

    Article  CAS  Google Scholar 

  197. Fang WZ, Chen L, Kang QJ, Tao WQ. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. Int J Therm Sci. 201;114:172–183. https://doi.org/10.1016/j.ijthermalsci.2016.12.017.

  198. Ma XJ, Cheng P. 3D simulations of pool boiling above smooth horizontal heated surfaces by a phase-change lattice Boltzmann method. Int J Heat Mass Transf. 2019;131:1095–108. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.103.

    Article  Google Scholar 

  199. Li Q, Kang QJ, Francois MM, He YL, Luo KH. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. Int J Heat and Mass Transf. 2015;85:787–96. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.136.

    Article  Google Scholar 

  200. Zhang L, Wang T, Jiang YY, Kim S, Guo CH. A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method. Int J Heat Mass Transf. 2018;122:775–84. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.026.

    Article  Google Scholar 

  201. Wang H, Lou Q, Liu G, Li L. Effects of contact angle hysteresis on bubble dynamics and heat transfer characteristics in saturated pool boiling. Int J Therm Sci, 2022;178:107554. https://doi.org/10.1016/j.ijthermalsci.2022.107554.

  202. Zhan H, Li S, Jin Z, Zhang G, Wang L, Li Q, Zhang Z. Study on boiling heat transfer of surface modification based on Lattice Boltzmann and experiments. J Mech Sci Technol. 2022;36:1025–39. https://doi.org/10.1007/s12206-022-0148-0.

    Article  Google Scholar 

  203. Nagayama G, Tsuruta T, Cheng P. Molecular dynamics simulation on bubble formation in a nanochannel. Int J Heat Mass Transf. 2006;49:4437–43. https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.030.

    Article  CAS  Google Scholar 

  204. Din XD, Michaelides EE. Kinetic theory and molecular dynamics simulations of microscopic flows. Phys Fluids. 1997;9:3915–25. https://doi.org/10.1063/1.869490.

    Article  CAS  Google Scholar 

  205. Barrat JR, Bocquet L. Large slip effect at a nonwetting fluid–solid interface. Phys Rev Lett. 1999;82:4671–4. https://doi.org/10.1103/PhysRevLett.82.4671.

    Article  CAS  Google Scholar 

  206. Matsumoto M, Yamamoto T. Initial stage of nucleate boiling at atomic scale. ASME/JSME Thermal Engineering Joint Conference. 2011;38921. https://doi.org/10.1115/AJTEC2011-44435.

  207. Yamamoto T, Matsumoto M. Initial Stage of Nucleate Boiling: Molecular Dynamics Investigation. J Therm Sci Tech. 2012;7:334349. https://doi.org/10.1299/jtst.7.334.

  208. Hens A, Agarwal R, Biswas G. Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation. Int J Heat Mass Transf. 2014;71:303–12. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.032.

    Article  CAS  Google Scholar 

  209. Zhang LY, Xu JL, Lei JP, Liu GL. The connection between wall wettability, boiling regime and symmetry breaking for nanoscale boiling. Int J Therm Sci. 2019;145:106033. https://doi.org/10.1016/j.ijthermalsci.2019.106033.

  210. Bai P, Zhou LP, Huang X, Du XZ. How wettability affects boiling heat transfer: A three-dimensional analysis with surface potential energy. Int J Heat Mass Transf. 2021;175:121391. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121391.

  211. Zhou WJ, Li Y, Li MJ, Wei JJ, Tao WQ. Bubble nucleation over patterned surfaces with different wettabilities: Molecular dynamics investigation. Int J Heat Mass Transf. 2019;136:1–9. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.093.

    Article  CAS  Google Scholar 

  212. Li Y, Zhou WJ, Zhang YH, Qi BJ, Wei JJ. A molecular dynamics study of surface wettability effects on heterogeneous bubble nucleation. Int Commun Heat Mass Transf. 2020;119:104991. https://doi.org/10.1016/j.icheatmasstransfer.2020.104991.

  213. Zhou W, Han D, Xia G. Maximal enhancement of nanoscale boiling heat transfer on superhydrophilic surfaces by improving solid-liquid interactions: Insights from molecular dynamics. Appl Surf Sci. 2022;591:153155. https://doi.org/10.1016/j.apsusc.2022.153155.

  214. Lee W, Son G, Yoon HY. Numerical study of bubble growth and boiling heat transfer on a microfinned surface. Int Commun Heat Mass Transf. 2012;39(1):52–7. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.008.

    Article  Google Scholar 

  215. Yazdani M, Radcliff T, Soteriou M, Alahyari AA. A high-fidelity approach towards simulation of pool boiling. Phys Fluids. 2016;28:365–401. https://doi.org/10.1063/1.4940042.

    Article  CAS  Google Scholar 

  216. Chen HX, Sun Y, Xiao HY, Wang XD. Bubble dynamics and heat transfer characteristics on a micropillar structured surface with different nucleation site positions. J Therm Anal Calorim. 2020;141:547–58. https://doi.org/10.1007/s10973-020-09301-x.

    Article  CAS  Google Scholar 

  217. Chen HX, Sun Y, Li LH, Wang XD. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various pillars heights. Int J Heat Mass Transf. 2020;163:120502. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120502.

  218. Cao ZZ, Zhou J, Wei JJ, Sun DL, Yu B. Direct numerical simulation of bubble dynamics and heat transfer during nucleate boiling on the micro-pin-finned surfaces. Int J Heat Mass Transf. 2020;163:120504. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120504.

  219. Cao ZZ, Zhou J, Liu A, Sun DL, Yu B, Wei JJ. A three dimensional coupled VOF and Level set (VOSET) method with and without phase change on general curvilinear grids. Chem Eng Sci. 2020;223:115705. https://doi.org/10.1016/j.ces.2020.115705.

  220. Sun T, Qin H, Liu Z. A Numerical Investigation of Nucleate Boiling on Enhanced Surfaces by Lattice Boltzmann Method. Int J Comput Meth. 2018;1850053. https://doi.org/10.1142/S0219876218500536.

  221. Chang XT, Huang HB, Cheng YP, Lu XY. Lattice Boltzmann study of pool boiling heat transfer enhancement on structured surfaces. Int J Heat Mass Transf. 2019;139588–599. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.041.

  222. Zhou P, Liu W, Liu ZJ. Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface. Int J Heat Mass Transfer. 2019;131:1–10. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.038.

    Article  CAS  Google Scholar 

  223. Mondal K, Bhattacharya A. Numerical Study of Pool Boiling Heat Transfer From Surface With Protrusions Using Lattice Boltzmann Method. J Heat Trans-T ASME. 2021;143:021603. https://doi.org/10.1115/1.4049031.

  224. Yu Y, Li Q, Qiu Y, Huang RZ. Bubble dynamics and dry spot formation during boiling on a hierarchical structured surface: A lattice Boltzmann study. Phys of Fluids. 2020;33:083306. https://doi.org/10.1063/5.0056894.

  225. Wang J, Liang G. Boiling heat transfer on two-tier hierarchical structured surface. Chem Eng Sci. 2023;270:118547. https://doi.org/10.1016/j.ces.2023.118547.

  226. Wang W, Huang S, Luo X. MD simulation on nano-scale heat transfer mechanism of sub-cooled boiling on nano-structured surface. Int J Heat Mass Transf. 2016;100:276–86. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.018.

    Article  CAS  Google Scholar 

  227. Liu YW, Zhang XR. Molecular dynamics simulation of nanobubble nucleation on rough surfaces. J Chem Phys. 2017;146:1–5. https://doi.org/10.1063/1.4981788.

    Article  CAS  Google Scholar 

  228. Zhang LY, Xu JL, Liu GL, Lei JP. Nucleate boiling on nanostructured surfaces using molecular dynamics simulations. Int J Therm Sci. 2020;152:106325. https://doi.org/10.1016/j.ijthermalsci.2020.106325.

  229. Chen YJ, Yu Z, Sun DL, Wang Y, Yu B. Molecular dynamics simulation of bubble nucleation on nanostructure surface. Int J Heat Mass Transf. 2018;118:1143–51. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.079.

    Article  CAS  Google Scholar 

  230. Ahmad S, Khan SA, Ali HM, Huang X, Zhao J. Molecular dynamics study of nanoscale boiling on double layered porous meshed surfaces with gradient porosity. Appl Nanosci. 2022;12:2997–3006. https://doi.org/10.1007/s13204-022-02568-6.

    Article  CAS  Google Scholar 

  231. Lee W, Son G, Jeong J. Numerical Analysis of Bubble Growth and Departure from a Microcavity. Numer Heat Tr B-Fund. 2010;58:323–42. https://doi.org/10.1080/10407790.2010.522871.

    Article  CAS  Google Scholar 

  232. Lee W, Son G. Numerical simulation of boiling enhancement on a micro structured surface. Int Commun Heat Mass Transf. 2011;38:168–73. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.017.

    Article  CAS  Google Scholar 

  233. Márkus A, Házi G. Numerical simulation of the detachment of bubbles from a rough surface at microscale level. Nucl Eng Des. 2012;248:263–9. https://doi.org/10.1016/j.nucengdes.2012.03.040.

    Article  CAS  Google Scholar 

  234. Zhou P, Liu ZC, Liu W, Duan XL. LBM simulates the effect of sole nucleate site geometry on pool boiling. Appl Therm Eng. 2019;160:114027. https://doi.org/10.1016/j.applthermaleng.2019.114027.

  235. Novak BR, Maginn EJ, Mccready MJ. An Atomistic Simulation Study of the Role of Asperities and Indentations on Heterogeneous Bubble Nucleation. J Heat Trans-T ASME. 2008;130:88–96. https://doi.org/10.1115/1.2818771.

    Article  CAS  Google Scholar 

  236. Mukherjee S, Datta S, Das AK. Molecular Dynamic Study of Boiling Heat Transfer Over Structured Surfaces. J Heat Trans-T ASME. 2018;140:054503. https://doi.org/10.1115/1.4038480.

  237. Zhang L, Yang Y, Han J. Microscopic mechanism of effects of nanostructure morphology on bubble nucleation: A molecular dynamics simulation. Numer Heat Tr A-appl. 2023;1–16. https://doi.org/10.1080/10407782.2023.2180461.

  238. Zhou W, Han D, Ma H, Hu Y, Xia G. Molecular dynamics study on enhanced nucleate boiling heat transfer on nanostructured surfaces with rectangular cavities. Int J Heat Mass Transf. 2022;191:122814. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122814.

  239. Zhao ZC, Zhang J, Jia DD, Zhao K, Zhang X, Jiang PP. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties. Appl Therm Eng. 2017;117:417–426. https://doi.org/10.1016/j.applthermaleng.2017.02.014.

  240. Chen HX, Li LH, Wang YR, Guo YX. Heat transfer enhancement in nucleate boiling on micropillar-arrayed surfaces with time-varying wettability. Appl Therm Eng. 2022;200:117649. https://doi.org/10.1016/j.applthermaleng.2021.117649.

  241. Li Q, Yu Y, Zhou P, Yan HJ. Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: A lattice Boltzmann study. Appl Therm Eng. 2017;132:490–9. https://doi.org/10.1016/j.applthermaleng.2017.12.105.

    Article  Google Scholar 

  242. Ma XJ, Cheng P, Quan XJ. Simulations of saturated boiling heat transfer on bio-inspired two-phase heat sinks by a phase-change lattice Boltzmann method. Int J Heat Mass Transf. 2018;127:1013–24. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.082.

    Article  Google Scholar 

  243. Yu Y, Wen ZX, Li Q, Zhou P, Yan HJ. Boiling heat transfer on hydrophilic hydrophobic mixed surfaces: a 3D lattice Boltzmann study. Appl Therm Eng. 2018;142:846–54. https://doi.org/10.1016/j.applthermaleng.2018.07.059.

    Article  CAS  Google Scholar 

  244. Feng Y, Chang FC, Hu ZT, Liu HX, Zhao JF. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM. Int J Therm Sci. 2021;163:106814. https://doi.org/10.1016/j.ijthermalsci.2020.106814.

  245. Xu ZG, Qin J, Ma XF. Experimental and numerical investigation on bubble behaviors and pool boiling heat transfer of semi-modified copper square pillar arrays. Int J Therm Sci. 2021;160:106680. https://doi.org/10.1016/j.ijthermalsci.2020.106680.

  246. Wang J, Liang G, Yin X, Shen S. Pool boiling on micro-structured surface with lattice Boltzmann method. Int J Therm Sci. 2023;187:108170. https://doi.org/10.1016/j.ijthermalsci.2023.108170.

  247. Diaz R, Guo Z. A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer. Heat Mass Transf. 2017;53:1061–71. https://doi.org/10.1007/s00231-016-1878-2.

    Article  CAS  Google Scholar 

  248. Diaz R, Guo Z. Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer. Numer Heat Tr A-Appl. 2017;72:891–903. https://doi.org/10.1080/10407782.2017.1412710.

    Article  CAS  Google Scholar 

  249. Chen YJ, Zou Y, Wang Y, Han DX, Yu B. Bubble nucleation on various surfaces with inhomogeneous interface wettability based on molecular dynamics simulation. Int Commun Heat Mass Transf. 2018;98:135–42. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.017.

    Article  CAS  Google Scholar 

  250. Bai P, Zhou LP, Huang XH, Du XZ. Molecular Insight into Bubble Nucleation on the Surface with Wettability Transition at Controlled Temperatures. Langmuir. 2021;37:8765–75. https://doi.org/10.1021/acs.langmuir.1c01121.

    Article  CAS  PubMed  Google Scholar 

  251. Gong S, Cheng P, Quan XJ. Two-dimensional mesoscale simulations of s-aturated pool boiling from rough surfaces. Part I: Bubble nucleation in a single cavity at low superheats. Int J Heat Mass Transf. 2016;100:927–937. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.085.

  252. Gong S, Cheng P, Quan XJ. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part II: Bubble interactions above multi-cavities. Int J Heat Mass Transf. 2016;100:938–948. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.082.

  253. Zhang L, Wang T, Kim S, Jiang YY. The effects of wall superheat and surface wettability on nucleation site interactions during boiling. Int J Heat Mass Transf. 2020;146(7):118820. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118820.

  254. Ahmad S, Liu HQ, Shi Y, Chen JT, Zhao JY. The study of nucleation site interactions on the mixed wettability rough surface. Int Commun Heat Mass Transf. 2021;126(2):105372. https://doi.org/10.1016/j.icheatmasstransfer.2021.105372.

  255. She XH, Shedd TA, Lindeman B, Yin YG, Zhang XS. Bubble formation on solid surface with a cavity based on molecular dynamics simulation. Int J Heat Mass Transf. 2016;95:278–87. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.082.

    Article  CAS  Google Scholar 

  256. Chen YJ, Li JF, Yu B, Sun DL, Zou Y, Han DX. Nanoscale Study of Bubble Nucleation on a Cavity Substrate Using Molecular Dynamics Simulation. Langmuir. 2018;34:14234–48. https://doi.org/10.1021/acs.langmuir.8b03044.

    Article  CAS  PubMed  Google Scholar 

  257. Chen Y J, Yu B, Zou Y, Chen BN, Tao WQ. Molecular dynamics studies of bubble nucleation on a grooved substrate. Int J Heat Mass Transf. 2020;158:119850. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119850.

  258. Shahmardi A, Tammisola O, Chinappi M, Brandt L. Effects of surface nanostructure and wettability on pool boiling: A molecular dynamics study. Int J Therm Sci. 2021;167:106980. https://doi.org/10.1016/j.ijthermalsci.2021.106980.

  259. Lavino AD, Smith E, Magnini M, Mater OK. Surface Topography Effects on Pool Boiling via Non-equilibrium Molecular Dynamics Simulations. Langmuir. 2021;37:5731–44. https://doi.org/10.1021/acs.langmuir.1c00779.

    Article  CAS  PubMed  Google Scholar 

  260. Abarajith HS, Dhir VK, Warrier G, Son G. Numerical Simulation and Experimental Validation of the Dynamics of Multiple Bubble Merger During Pool Boiling Under Microgravity Conditions. Ann Ny Acad Sci. 2010;1027:235–58. https://doi.org/10.1196/annals.1324.020.

    Article  Google Scholar 

  261. Wu JF, Dhir VK. Numerical Simulations of the Dynamics and Heat Transfer Associated with a Single Bubble in Subcooled Pool Boiling. J Heat Trans-T ASME. 2010;132:111501. https://doi.org/10.1115/1.4002093.

  262. Wu JF, Dhir VK. Numerical simulation of dynamics and heat transfer associated with a single bubble in subcooled boiling and in the presence of noncondensables, J Heat Trans-T ASME. 2011;133:041502. https://doi.org/10.1115/1.4000979.

  263. Dhir VK, Warrier GR, Aktinol E, Chao D, Eggers J, Sheredy W, Booth W. Nucleate Pool Boiling Experiments (NPBX) on the International Space Station. Microgravity Sci Technol. 2011;24:307–25. https://doi.org/10.1007/s12217-012-9315-8.

    Article  CAS  Google Scholar 

  264. Aktinol E, Warrier GR, Dhir VK. Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid. Int J Heat Mass Transf. 2014;79:251–68. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.014.

    Article  CAS  Google Scholar 

  265. Urbano A, Tanguy S, Colin C. Direct numerical simulation of nucleate boiling in zero gravity conditions. Int J Heat Mass Transf. 2019;143:118521.1–118521.13. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118521.

  266. Yi TH, Lei ZS, Zhao JF. Numerical investigation of bubble dynamics and heat transfer in subcooling pool boiling under low gravity. Int J Heat Mass Transfer. 2019;132:1176–86. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.096.

    Article  Google Scholar 

  267. Ryu S, Ko S. Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice Boltzmann method. Nucl Eng Des. 2012;248:248–62. https://doi.org/10.1016/j.nucengdes.2012.03.031.

    Article  CAS  Google Scholar 

  268. Sadeghi R, Shadloo MS, Jamalabadi MYA, Karimipour A. A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling. Int Commun Heat Mass Transf. 2016;79:8–66. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.009.

    Article  Google Scholar 

  269. Lee T. Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids. Comput Math Appl. 2009;58:987–94. https://doi.org/10.1016/j.camwa.2009.02.017.

    Article  Google Scholar 

  270. Guzella MD, Czelusniak LE, Mapelli VP, Alvarino PF, RibatskiG, Cabezas-Gomez L. Simulation of Boiling Heat Transfer at Different Reduced Temperatures with an Improved Pseudopotential Lattice Boltzmann Method. Symmetry. 2020;12:1358. https://doi.org/10.3390/sym12081358.

  271. Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E. 2002;65:046308. https://doi.org/10.1103/PhysRevE.65.046308.

  272. Feng Y, Li HX, Zhao JF, Guo KK, Lei XL. Lattice Boltzmann Study on Influence of Gravitational Acceleration on Pool Nucleate Boiling Heat Transfer. Microgravity Sci Tec. 2021;33:1–16. https://doi.org/10.1007/s12217-020-09864-2.

    Article  CAS  Google Scholar 

  273. Mohammadpourfard M, Aminfar H, Sahraro M. Numerical simulation of nucleate pool boiling on the horizontal surface for ferrofluid under the effect of non-uniform magnetic field. Heat Mass Transf. 2014;50:1167–76. https://doi.org/10.1007/s00231-014-1316-2.

    Article  CAS  Google Scholar 

  274. Mortezazadeh R, Aminfar H, Mohammadpourfard M. Eulerian-Eulerian simulation of non-uniform magnetic field effects on the ferrofluid nucleate pool boiling. J Eng Thermophys. 2017;26:580–97. https://doi.org/10.1134/S1810232817040129.

    Article  CAS  Google Scholar 

  275. Qi C, Wan YL, Liang L, Rao ZH, Li YM. Numerical and Experimental Investigation into the Effects of Nanoparticle Mass Fraction and Bubble Size on Boiling Heat Transfer of TiO2-Water Nanofluid. J Heat Trans-T ASME. 2016;138:081503. https://doi.org/10.1115/1.4033353.

  276. Niknam PH, Haghighi M, Kasiri N, Khanof MH. Numerical study of low concentration nanofluids pool boiling, investigating of boiling parameters introducing nucleation site density ratio. Heat Mass Transf. 2015;51:601–9. https://doi.org/10.1007/s00231-014-1433-y.

    Article  CAS  Google Scholar 

  277. Salehi H, Hormozi F. Numerical study of silica-water based nanofluid nucleate pool boiling by two-phase Eulerian scheme. Heat Mass Transf. 2017;54:773–84. https://doi.org/10.1007/s00231-017-2146-9.

    Article  CAS  Google Scholar 

  278. Salehi H, Hormozi F. Prediction of Al2O3-water nanofluids pool boiling heat transfer coefficient at low heat fluxes by using response surface methodology. J Therm Anal Calorim. 2019;137:1069–82. https://doi.org/10.1007/s10973-018-07993-w.

    Article  CAS  Google Scholar 

  279. Kamel MS, Al-Agha MS, Lezsovits F, Mahian O. Simulation of pool boiling of nanofluids by using Eulerian multiphase model. J Therm Anal Calorim. 2019;142:493–505. https://doi.org/10.1007/s10973-019-09180-x.

    Article  CAS  Google Scholar 

  280. Emlin V, Joshy PJ, Tide PS. Numerical Analysis of Pool Boiling of Nanofluids for High Heat Dissipation Applications. IEEE T Comp Pack Man. 2022;12:1293–301. https://doi.org/10.1109/TCPMT.2022.3193675.

    Article  CAS  Google Scholar 

  281. Zaboli S, Alimoradi H, Sham M. Numerical investigation on improvement in pool boiling heat transfer characteristics using different nanofluid concentrations. J Therm Anal Calorim. 2022;147:10659–76. https://doi.org/10.1007/s10973-022-11272-0.

    Article  CAS  Google Scholar 

  282. Gajghate SS, Barathula S, Cardoso EM, Saha BB, Bhaumik S. Effect of staggered V-shaped and rectangular grooves copper surfaces on pool boiling heat transfer enhancement using ZrO2 nanofluids. J Braz Soc Mech Sci Eng. 2021;43:75. https://doi.org/10.1007/s40430-020-02759-8.

    Article  CAS  Google Scholar 

  283. Majdi HS, Hussein HMA, Habeeb LJ, Zivkovic D. Pool boiling simulation of two nanofluids at multi concentrations in enclosure with different shapes of fins. Materials Today: Proceedings. 2022;60:2043–63. https://doi.org/10.1016/j.matpr.2022.01.290.

    Article  CAS  Google Scholar 

  284. Rostamzadeh A, Jafarpur K, Goshtasbi Rad E. Numerical investigation of pool nucleate boiling in nanofluid with lattice Boltzmann method. J Theor App Mech 2016;54:811–825. https://doi.org/10.15632/jtam-pl.54.3.811.

  285. Wang D, Cheng P. Effects of nanoparticles' wettability on vapor bubble coalescence in saturated pool boiling of nanofluids: A lattice Boltzmann simulation. Int J Heat Mass Transf. 2020;154:119669. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119669.

  286. Zhang D, Li SF, Li Y, Mei N, Yuan H. Lattice Boltzmann simulation of seawater boiling in the presence of non-condensable gas. Int J Heat Mass Transf. 2019;142:118415. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.065.

  287. Yin X, Hu C, Bai M, Lv JZ. Molecular dynamics simulation on the effect of nanoparticles on the heat transfer characteristics of pool boiling. Numer Heat Tr B-Fund. 2018;73:94–105. https://doi.org/10.1080/10407790.2017.1420323.

    Article  Google Scholar 

  288. Kunkelmann C, Stephan P. CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OPENFOAM. Numer Heat Tr A-App. 2009;56:631–46. https://doi.org/10.1080/10407780903423908.

    Article  CAS  Google Scholar 

  289. Zhang L, Li ZD, Li K, Li HX, Zhao JF. Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling. Appl Therm Eng. 2015;88:118–26. https://doi.org/10.1016/j.applthermaleng.2014.11.080.

    Article  Google Scholar 

  290. Pezo M, Stevanovic V. Numerical prediction of critical heat flux in pool boiling with the two-fluid model. Int J Heat Mass Transf. 2011;54:3296–303. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.057.

    Article  CAS  Google Scholar 

  291. Petrovic MM, Stevanovic VD. Coupled two-fluid flow and wall heat conduction modeling of nucleate pool boiling. Numer Heat Tr A-Appl. 2021;80(3):63–91. https://doi.org/10.1080/10407782.2021.1935047.

    Article  CAS  Google Scholar 

  292. Giustini G, Kim I, Kim H. Comparison between modelled and measured heat transfer rates during the departure of a steam bubble from a solid surface. Int J Heat Mass Transf. 2020;148:119092. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119092.

  293. Gong S, Cheng P. Direct numerical simulations of pool boiling curves including heater’s thermal responses and the effect of vapor phase’s thermal conductivity. Int Commun Heat Mass Transf. 2017;87:61–71. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.023.

    Article  Google Scholar 

  294. Qin J, Xu Z, Ma X. Pore-Scale Simulation on Pool Boiling Heat Transfer and Bubble Dynamics in Open-Cell Metal Foam by Lattice Boltzmann Method. J Heat Trans-T ASME. 2021;143:011602. https://doi.org/10.1115/1.4048734.

  295. Hu AJ, Liu D. 2D Simulation of boiling heat transfer on the wall with an improved hybrid lattice Boltzmann model. Appl Therm Eng. 2019;159:113788. https://doi.org/10.1016/j.applthermaleng.2019.113788.

  296. Zhao W, Liang J, Sun M, Wang Z. Investigation on the effect of convective outflow boundary condition on the bubbles growth, rising and breakup dynamics of nucleate boiling. Int J Therm Sci. 2021;167:106877. https://doi.org/10.1016/j.ijthermalsci.2021.106877.

  297. Murallidharan J, Giustini G, Sato Y, Niceno B, Badalassi V, Walker SP. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions. Nucl Eng Tech. 2016;48:859–69. https://doi.org/10.1016/j.net.2016.06.004.

    Article  Google Scholar 

  298. Sakashita H. Bubble growth rates and nucleation site densities in saturated pool boiling of water at high pressures. J Nucl Sci Technol. 2011;48:734–43. https://doi.org/10.1080/18811248.2011.9711756.

    Article  CAS  Google Scholar 

  299. Sielaff A, Dietl J, Herbert S, Stephan P. The Influence of System Pressure on Bubble Coalescence in Nucleate Boiling. Heat Transfer Eng. 2014;35:420–9. https://doi.org/10.1080/01457632.2013.830917.

    Article  CAS  Google Scholar 

  300. Hardt S, Wondra F. Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms. J Comput Phys. 2008;227:5871–95. https://doi.org/10.1016/j.jcp.2008.02.020.

    Article  Google Scholar 

  301. Ren S, Zhou WZ. Numerical investigation of nucleate pool boiling outside a vertical tube under sub-atmospheric pressures. Int Commun Heat Mass Transf. 2020;116:104662. https://doi.org/10.1016/j.icheatmasstransfer.2020.104662.

  302. Hristov Y, Zhao D, Kenning DBR, Sefiane K, Karayiannis TG. A study of nucleate boiling and critical heat flux with EHD enhancement. Heat Mass Transf. 2009;45:999–1017. https://doi.org/10.1007/s00231-007-0286-z.

    Article  CAS  Google Scholar 

  303. Feng Y, Li HX, Guo KK, Lei XL, Zhao JF. Numerical study on saturated pool boiling heat transfer in presence of a uniform electric field using lattice Boltzmann method. Int J Heat Mass Transf. 2019;135:885–96. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.119.

    Article  Google Scholar 

  304. Feng Y, Li HX, Guo KK, Lei XL, Zhao JF. Numerical investigation on bubble dynamics during pool nucleate boiling in presence of a non-uniform electric field by LBM. Appl Therm Eng. 2019;155:637–49. https://doi.org/10.1016/j.applthermaleng.2019.04.110.

    Article  Google Scholar 

  305. Yao JD, Luo K, Wu J, Yi HL. Electrohydrodynamic effects on bubble dynamics during nucleate pool boiling under the leaky dielectric assumption. Phys Fluids. 2022;34:013606. https://doi.org/10.1063/5.0077313.

  306. Li W, Li Q, Chang H, Yu Y, Tang S. Electric field enhancement of pool boiling of dielectric fluids on pillar-structured surfaces: A lattice Boltzmann study. Phys Fluids. 2022;34:123327. https://doi.org/10.1063/5.0122145.

  307. Tondro AAA, Maddahian R, Arefmanesh A. Assessment of the inclination surface on the microlayer behavior during nucleate boiling, a numerical study. Heat Mass Transf. 2019;55:2103–16. https://doi.org/10.1007/s00231-019-02566-5.

    Article  CAS  Google Scholar 

  308. Tondro AAA, Maddahian R, Arefmanesh A. Effect of heated surface inclination on the growth dynamics and detachment of a vapor bubble, a numerical study. Heat Mass Transf. 2021;57:205–22. https://doi.org/10.1007/s00231-020-02937-3.

    Article  CAS  Google Scholar 

  309. Sun T, Li WZ, Dong B. Numerical simulation of vapor bubble growth on a vertical superheated wall using lattice Boltzmann method. Int J Numer Method Heat Fluid Flow. 2015;25:1214–30. https://doi.org/10.1108/HFF-08-2013-0263.

    Article  Google Scholar 

  310. Dong B, Zhang YJ, Zhou X, Chen C, Li WZ. Numerical Simulation of Bubble Dynamics in Subcooled Boiling Along Inclined Structured Surface. J Thermophys Heat Transf. 2020;35:16–27. https://doi.org/10.2514/1.T5906.

    Article  Google Scholar 

  311. Chen Z, Wu F, Utaka Y. Numerical simulation of thermal property effect of heat transfer plate on bubble growth with microlayer evaporation during nucleate pool boiling. Int J Heat Mass Transf. 2018;118:989–96. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.083.

    Article  Google Scholar 

  312. Diaz R, Guo Z. Enhanced conduction and pool boiling heat transfer on single-layer graphene-coated substrates. J Enhanc Heat Transf. 2019;26:127–43. https://doi.org/10.1615/JEnhHeatTransf.2018028488.

    Article  CAS  Google Scholar 

  313. Sattari E, Delavar MA, Fattahi E, Sedighi K. Numerical investigation the effects of working parameters on nucleate pool boiling. Int Commun Heat Mass Transf. 2014;59:106–13. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.004.

    Article  Google Scholar 

  314. Shan XP, Guan G, Nie DM. Numerical study on the boiling heat transfer induced by two heated plates. Therm Sci. 2020;24:257–65. https://doi.org/10.2298/TSCI20S1257S.

    Article  Google Scholar 

  315. Wei JJ, Yu B, Wang HS. Heat transfer mechanisms in vapor mushroom region of saturated nucleate pool boiling. Int J Heat Fluid Flow. 2003;24:210–22. https://doi.org/10.1016/S0142-727X(02)00244-8.

    Article  CAS  Google Scholar 

  316. Gaertner RF. Photographic study of nucleate pool boiling on a horizontal surface. J Heat Trans-T ASME. 1965;87:17–29. https://doi.org/10.1115/1.3689038.

    Article  CAS  Google Scholar 

  317. Katto Y, Yokoya S. Behavior of a vapor mass in saturated nucleate and transition pool boiling. Trans JSME. 1975;41:294–305.

    Article  Google Scholar 

  318. Ghoshdastidar PS, Kabelac S, Mohanty A. Numerical Modelling of Atmospheric Pool Boiling by the Coupled Map Lattice Method. P I Mech Eng C-J Mec. 2004;218:195–205. https://doi.org/10.1243/095440604322886496.

    Article  CAS  Google Scholar 

  319. Sadhu S, Ghoshdastidar PS. Heat Flux Controlled Pool Boiling of Zirconia-Water and Silver-Water Nanofluids on a Flat Plate: A Coupled Map Lattice Simulation. J Heat Trans-T ASME. 2015;137:021503. https://doi.org/10.1115/1.4028974.

  320. Son G, Dhir VK. Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int J Heat Mass Transf. 2008;51:2566–82. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.046.

    Article  CAS  Google Scholar 

  321. Stephan K, Abdelsalam M. Heat transfer correlation for natural convection boiling. Int J Heat Mass Transfer. 1980;23:73–87. https://doi.org/10.1016/0017-9310(80)90140-4.

    Article  CAS  Google Scholar 

  322. Garg D, Dhir VK. A Unified Three-Dimensional Numerical Model for Boiling Curve in a Temperature Controlled Model. J Heat Trans-T ASME. 2019;141(1):011504. https://doi.org/10.1115/1.4041798.

  323. Berenson PJ. Film Boiling Heat Transfer From a Horizontal Surface. J Heat Trans-T ASME. 1961;83(3):351–6. https://doi.org/10.1115/1.3682280.

    Article  CAS  Google Scholar 

  324. Wang JS, Diao MZ, Liu XL. Numerical simulation of pool boiling with special heated surfaces. Int J Heat Mass Transf. 2019;130:460–8. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.120.

    Article  Google Scholar 

  325. Liu Y, Olewski T, Véchot LN. Modeling of a cryogenic liquid pool boiling by CFD simulation. J Loss Prevent Proc. 2015;35:125–34. https://doi.org/10.1016/j.jlp.2015.04.006.

    Article  CAS  Google Scholar 

  326. Kim SJ, Bang IC, Buongiorno J, Hu LW. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50:4105–16. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002.

    Article  CAS  Google Scholar 

  327. Kim HD, Kim MH. Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl Phys Lett. 2007;91:014104. https://doi.org/10.1063/1.2754644.

  328. Ahn HS, Lee C, Kim J, Kim MH. The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux. Int J Heat Mass Transf. 2012;55:89–92. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.044.

    Article  CAS  Google Scholar 

  329. McGillis WR, Carey VP, Fitch JS, Hamburgen WR. Pool boiling enhanc-ement techniques for water at low pressure. In: Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. 1991;64–72. https://doi.org/10.1109/STHERM.1991.152914.

  330. Márkus A, Házi G. On pool boiling at microscale level: The effect of a cavity and heat conduction in the heated wall. Nucl Eng Des. 2012;248:238–47. https://doi.org/10.1016/j.nucengdes.2012.03.027.

    Article  CAS  Google Scholar 

  331. Ma XJ, Cheng P. Numerical Simulation of Complete Pool Boiling Curves: From Nucleation to Critical Heat Flux Through Transition Boiling to Film Boiling. J Nucl Sci Technol. 2018;193:1–13. https://doi.org/10.1080/00295639.2018.1504566.

    Article  Google Scholar 

  332. Gong S, Zhang L, Cheng P, Wang EN. Understanding triggering mechanisms for critical heat flux in pool boiling based on direct numerical simulations. Int J Heat Mass Transf. 2020;163:120546. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120546.

  333. Quan X, Wang D, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid. Int J Heat Mass Transf. 2017;108:32–40.

    Article  CAS  Google Scholar 

  334. Sajjad U, Hussain I, Hamid K, Bhat SA, Ali HM, Wang CC. A deep learning method for estimating the boiling heat transfer coefficient of porous surfaces. J Therm Anal Calorim. 2021;145:1911–23. https://doi.org/10.1007/s10973-021-10606-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 52276019, 51976146) and the authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

HJ did writing, original draft, conceptualization, methodology, investigation, software, data curation, and formal analysis. YL was involved in supervision, project administration, funding acquisition, writing—review and editing. HC performed resources, supervision, and project administration.

Corresponding authors

Correspondence to Yingwen Liu or Huaqiang Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Liu, Y. & Chu, H. A review of numerical investigation on pool boiling. J Therm Anal Calorim 148, 8697–8745 (2023). https://doi.org/10.1007/s10973-023-12292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12292-0

Keywords

Navigation