Skip to main content

Advertisement

Log in

The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

It is well recognized that mechanical signals play a critical role in the regulation of skeletal muscle mass, and the maintenance of muscle mass is essential for mobility, disease prevention and quality of life. Furthermore, over the last 15 years it has become established that signaling through a protein kinase called the mammalian (or mechanistic) target of rapamycin (mTOR) is essential for mechanically-induced changes in protein synthesis and muscle mass, however, the mechanism(s) via which mechanical stimuli regulate mTOR signaling have not been defined. Nonetheless, advancements are being made, and an emerging body of evidence suggests that the late endosome/lysosomal (LEL) system might play a key role in this process. Therefore, the purpose of this review is to summarize this body of evidence. Specifically, we will first explain why the Ras homologue enriched in brain (Rheb) and phosphatidic acid (PA) are considered to be direct activators of mTOR signaling. We will then describe the process of endocytosis and its involvement in the formation of LEL structures, as well as the evidence which indicates that mTOR and its direct activators (Rheb and PA) are all enriched at the LEL. Finally, we will summarize the evidence that has implicated the LEL in the regulation of mTOR by various growth regulatory inputs such as amino acids, growth factors and mechanical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89(2):197–204. doi:http://dx.doi.org/10.1016/j.biochi.2006.09.021

    Google Scholar 

  • Aspuria PJ, Tamanoi F (2004) The Rheb family of GTP-binding proteins. Cell Signal 16(10):1105–1112. doi:10.1016/j.cellsig.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  • Avila-Flores A, Santos T, Rincon E, Merida I (2005) Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem 280(11):10091–10099

    Article  CAS  PubMed  Google Scholar 

  • Ballou LM, Jiang YP, Du G, Frohman MA, Lin RZ (2003) Ca(2 +)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Lett 550(1–3):51–56

    Article  CAS  PubMed  Google Scholar 

  • Banno Y, Takuwa Y, Yamada M, Takuwa N, Ohguchi K, Hara A, Nozawa Y (2003) Involvement of phospholipase D in insulin-like growth factor-I-induced activation of extracellular signal-regulated kinase, but not phosphoinositide 3-kinase or Akt, in Chinese hamster ovary cells. Biochem J 369(Pt 2):363–368. doi:10.1042/BJ20021368BJ20021368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Bright NA, Reaves BJ, Mullock BM, Luzio JP (1997) Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17):2027–2040

    CAS  PubMed  Google Scholar 

  • Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K, Walker CL (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173(2):279–289. doi:10.1083/jcb.200507119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carman GM, Han G-S (2006) Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 31(12):694–699. doi:http://dx.doi.org/10.1016/j.tibs.2006.10.003

    Google Scholar 

  • Cleland PJ, Appleby GJ, Rattigan S, Clark MG (1989) Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J Biol Chem 264(30):17704–17711

    CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501–503

    Article  CAS  PubMed  Google Scholar 

  • Dibble Christian C, Elis W, Menon S, Qin W, Klekota J, Asara John M, Finan Peter M, Kwiatkowski David J, Murphy Leon O, Manning Brendan D (2012) TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol Cell 47(4):535–546. doi:http://dx.doi.org/10.1016/j.molcel.2012.06.009

    Google Scholar 

  • Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(Pt 7):1535–1546. doi:10.1113/jphysiol.2008.163816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudgeon WD, Phillips KD, Carson JA, Brewer RB, Durstine JL, Hand GA (2006) Counteracting muscle wasting in HIV-infected individuals. HIV Med 7(5):299–310. doi:10.1111/j.1468-1293.2006.00380.x

    Article  CAS  PubMed  Google Scholar 

  • Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13(3):137–145

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294(5548):1942–1945

    Article  CAS  PubMed  Google Scholar 

  • Farese RV, Barnes DE, Davis JS, Standaert ML, Pollet RJ (1984) Effects of insulin and protein synthesis inhibitors on phospholipid metabolism, diacylglycerol levels, and pyruvate dehydrogenase activity in BC3H-1 cultured myocytes. J Biol Chem 259(11):7094–7100

    CAS  PubMed  Google Scholar 

  • Fearon K, Arends J, Baracos V (2013) Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 10(2):90–99. doi:10.1038/nrclinonc.2012.209nrclinonc.2012.209

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89(2):823–839

    CAS  PubMed  Google Scholar 

  • Flinn RJ, Yan Y, Goswami S, Parker PJ, Backer JM (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21(5):833–841. doi:10.1091/mbc.E09-09-0756E09-09-0756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster DA (2007) Regulation of mTOR by phosphatidic acid? Cancer Res 67(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C, Uchida K, Wada K, Kabuta T (2013) Direct uptake and degradation of DNA by lysosomes. Autophagy 9(8):1167–1171. doi:10.4161/auto.2488024880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266(32):21327–21330

    CAS  PubMed  Google Scholar 

  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G (2003) Insulin activation of Rheb, a mediator of mTOR/S6 K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11(6):1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (1968) Protein synthesis during work-induced growth of skeletal muscle. J Cell Biol 36(3):653–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7(3):185–198

    CAS  PubMed  Google Scholar 

  • Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21(18):3258–3268. doi:10.1091/mbc.E10-05-0454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589(Pt 22):5485–5501. doi:10.1113/jphysiol.2011.218255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman CA, Kotecki JA, Jacobs BL, Hornberger TA (2012) Muscle fiber type-dependent differences in the regulation of protein synthesis. PLoS ONE 7(5):e37890. doi:10.1371/journal.pone.0037890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman CA, McNally RM, Hoffmann FM, Hornberger TA (2013) Smad3 induces Atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol Endocrinol. doi:10.1210/me.2013-1194

    PubMed  Google Scholar 

  • Ha SH, Kim DH, Kim IS, Kim JH, Lee MN, Lee HJ, Kim JH, Jang SK, Suh PG, Ryu SH (2006) PLD2 forms a functional complex with mTOR/raptor to transduce mitogenic signals. Cell Signal 18(12):2283–2291

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA (2011) Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 43(9):1267–1276. doi:10.1016/j.biocel.2011.05.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hornberger TA, Chien S (2006) Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 97(6):1207–1216. doi:10.1002/jcb.20671

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380(Pt 3):795–804. doi:10.1042/BJ20040274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA 103(12):4741–4746. doi:10.1073/pnas.0600678103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hornberger TA, Sukhija KB, Wang XR, Chien S (2007) mTOR is the rapamycin-sensitive kinase that confers mechanically-induced phosphorylation of the hydrophobic motif site Thr(389) in p70(S6 k). FEBS Lett 581(24):4562–4566. doi:10.1016/j.febslet.2007.08.045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Manning BD (2008) The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412(2):179–190. doi:10.1042/bj20080281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500. doi:10.1038/emboj.2011.286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hurley BF, Hanson ED, Sheaff AK (2011) Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 41(4):289–306. doi:10.2165/11585920-000000000-00000

    Article  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657. doi:10.1038/ncb839

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834. doi:10.1101/gad.11100031110003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K (2008) Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7(2):159–172. doi:10.1016/j.cmet.2007.11.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA (2013) Eccentric contractions increase TSC2 phosphorylation and alter the targeting of TSC2 and mTOR to the lysosome. J Physiol. doi:10.1113/jphysiol.2013.256339

    PubMed  Google Scholar 

  • Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85

    Article  PubMed  Google Scholar 

  • Jewell JL, Russell RC, Guan K-L (2013) Amino acid signalling upstream of mTOR. Nat Rev 14(3):133–139

    Article  CAS  Google Scholar 

  • Karnam P, Standaert ML, Galloway L, Farese RV (1997) Activation and translocation of Rho (and ADP ribosylation factor) by insulin in rat adipocytes. Apparent involvement of phosphatidylinositol 3-kinase. J Biol Chem 272(10):6136–6140

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945. doi:10.1038/ncb1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS (2005) Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280(9):7570–7580

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Fambrough DM (1987) Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis. Cell 49(5):669–677

    Article  CAS  PubMed  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005a) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713. doi:10.1016/j.cub.2005.02.053

    Article  CAS  PubMed  Google Scholar 

  • Long X, Ortiz-Vega S, Lin Y, Avruch J (2005b) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280(25):23433–23436

    Article  CAS  PubMed  Google Scholar 

  • Luzio JP, Rous BA, Bright NA, Pryor PR, Mullock BM, Piper RC (2000) Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci 113(Pt 9):1515–1524

    CAS  PubMed  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8(8):622–632. doi:10.1038/nrm2217

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie MG, Hamilton DL, Murray JT, Taylor PM, Baar K (2009) mVps34 is activated following high-resistance contractions. J Physiol 587(Pt 1):253–260. doi:10.1113/jphysiol.2008.159830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162

    Article  CAS  PubMed  Google Scholar 

  • Maxfield FR, Yamashiro DJ (1987) Endosome acidification and the pathways of receptor-mediated endocytosis. Adv Exp Med Biol 225:189–198

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, McCarthy JJ, Esser KA (2010) Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J 277(9):2180–2191. doi:10.1111/j.1742-4658.2010.07635.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35(4):411–429. doi:10.1002/mus.20743

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavare S, Inoki K, Shimizu S (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332(6032):966–970. doi:10.1126/science.1205407science.1205407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102(40):14238–14243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(Pt 14):3691–3701. doi:10.1113/jphysiol.2009.173609

    Article  PubMed Central  PubMed  Google Scholar 

  • Pahor M, Kritchevsky S (1998) Research hypotheses on muscle wasting, aging, loss of function and disability. J Nutr Health Aging 2(2):97–100

    CAS  PubMed  Google Scholar 

  • Plevin R, Cook SJ, Palmer S, Wakelam MJ (1991) Multiple sources of sn-1,2-diacylglycerol in platelet-derived-growth-factor-stimulated Swiss 3T3 fibroblasts. Evidence for activation of phosphoinositidase C and phosphatidylcholine-specific phospholipase D. Biochem J 279(Pt 2):559–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658–665. doi:10.1038/ncb840

    Article  CAS  PubMed  Google Scholar 

  • Proctor DN, Balagopal P, Nair KS (1998) Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr 128(2 Suppl):351S–355S

    CAS  PubMed  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749. doi:10.1016/j.cell.2005.06.043

    Article  CAS  PubMed  Google Scholar 

  • Roccio M, Bos JL, Zwartkruis FJ (2006) Regulation of the small GTPase Rheb by amino acids. Oncogene 25(5):657–664. doi:10.1038/sj.onc.1209106

    Article  CAS  PubMed  Google Scholar 

  • Sa G, Das T (1999) Basic fibroblast growth factor stimulates cytosolic phospholipase A2, phospholipase C-gamma1 and phospholipase D through distinguishable signaling mechanisms. Mol Cell Biochem 198(1–2):19–30

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Araki Y, Kontani K, Nishina H, Katada T (2005) Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem 137(3):423–430. doi:10.1093/jb/mvi046

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. doi:10.1016/j.molcel.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303. doi:10.1016/j.cell.2010.02.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284(19):12783–12791. doi:10.1074/jbc.M809207200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566–571. doi:10.1038/ncb996ncb996

    Article  CAS  PubMed  Google Scholar 

  • Schneede A, Schmidt CK, Holtta-Vuori M, Heeren J, Willenborg M, Blanz J, Domanskyy M, Breiden B, Brodesser S, Landgrebe J, Sandhoff K, Ikonen E, Saftig P, Eskelinen EL (2011) Role for LAMP-2 in endosomal cholesterol transport. J Cell Mol Med 15(2):280–295. doi:10.1111/j.1582-4934.2009.00973.xJCMM973

    Article  CAS  PubMed  Google Scholar 

  • Seguin R, Nelson ME (2003) The benefits of strength training for older adults. Am J Prev Med 25(3 Suppl 2):141–149

    Article  PubMed  Google Scholar 

  • Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322. doi:10.1016/j.molcel.2010.09.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seymour LW, Shoaibi MA, Martin A, Ahmed A, Elvin P, Kerr DJ, Wakelam MJ (1996) Vascular endothelial growth factor stimulates protein kinase C-dependent phospholipase D activity in endothelial cells. Lab Investig 75(3):427–437

    CAS  PubMed  Google Scholar 

  • Song J, Jiang YW, Foster DA (1994) Epidermal growth factor induces the production of biologically distinguishable diglyceride species from phosphatidylinositol and phosphatidylcholine via the independent activation of type C and type D phospholipases. Cell Growth Differ 5(1):79–85

    CAS  PubMed  Google Scholar 

  • Su W, Yeku O, Olepu S, Genna A, Park JS, Ren H, Du G, Gelb MH, Morris AJ, Frohman MA (2009) 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol 75(3):437–446. doi:10.1124/mol.108.053298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Fang Y, Yoon MS, Zhang C, Roccio M, Zwartkruis FJ, Armstrong M, Brown HA, Chen J (2008) Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA 105(24):8286–8291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabancay AP, Gau C-L, Machado IMP, Uhlmann EJ, Gutmann DH, Guo L, Tamanoi F (2003) Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6 K. J Biol Chem 278(41):39921–39930. doi:10.1074/jbc.M306553200

    Article  CAS  PubMed  Google Scholar 

  • Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T (2006) Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 281(39):28605–28614. doi:10.1074/jbc.M606087200

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Yuan J, Chen X, Gu X, Luo K, Li J, Wan B, Wang Y, Yu L (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J Biochem Mol Biol 39(5):626–635

    Article  CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    Article  CAS  PubMed  Google Scholar 

  • van Ijzendoorn SC (2006) Recycling endosomes. J Cell Sci 119(Pt 9):1679–1681. doi:10.1242/jcs.02948

    Article  PubMed  Google Scholar 

  • Vandenburgh HH (1987) Motion into mass: how does tension stimulate muscle growth? Med Sci Sports Exerc 19(5 Suppl):S142–S149

    CAS  PubMed  Google Scholar 

  • Vandenburgh H, Chromiak J, Shansky J, Del Tatto M, Lemaire J (1999) Space travel directly induces skeletal muscle atrophy. Faseb J 13(9):1031–1038

    CAS  PubMed  Google Scholar 

  • Veverka V, Crabbe T, Bird I, Lennie G, Muskett FW, Taylor RJ, Carr MD (2008) Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene 27(5):585–595

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45(3):250–278

    Article  CAS  PubMed  Google Scholar 

  • Yoon MS, Du G, Backer JM, Frohman MA, Chen J (2011a) Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J Cell Biol 195(3):435–447. doi:10.1083/jcb.201107033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon MS, Sun Y, Arauz E, Jiang Y, Chen J (2011b) Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J Biol Chem 286(34):29568–29574. doi:10.1074/jbc.M111.262816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • You JS, Frey JW, Hornberger TA (2012) Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid. PLoS ONE 7(10):e47258. doi:10.1371/journal.pone.0047258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5(6):578–581. doi:10.1038/ncb999ncb999

    Article  CAS  PubMed  Google Scholar 

  • Zhang HH, Huang J, Duvel K, Boback B, Wu S, Squillace RM, Wu CL, Manning BD (2009) Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 4(7):e6189. doi:10.1371/journal.pone.0006189

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Zhou H, Zhao X, Wolff DW, Tu Y, Liu H, Wei T, Yang F (2012) Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis. J Lipid Res 53(10):2102–2114. doi:10.1194/jlr.M027557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683. doi:10.1126/science.1207056334/6056/678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou J, Zhou L, Du XX, Ji Y, Xu J, Tian J, Jiang W, Zou Y, Yu S, Gan L, Luo M, Yang Q, Cui Y, Yang W, Xia X, Chen M, Zhao X, Shen Y, Chen PY, Worley PF, Xiao B (2011) Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell 20(1):97–108. doi:10.1016/j.devcel.2010.11.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grant (AR057347) to TAH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy A. Hornberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, B.L., Goodman, C.A. & Hornberger, T.A. The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil 35, 11–21 (2014). https://doi.org/10.1007/s10974-013-9367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9367-4

Keywords

Navigation