Skip to main content

Advertisement

Log in

Rangeland biodiversity assessment using fine scale on-ground survey, time series of remotely sensed ground cover and climate data: an Australian savanna case study

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Savanna rangelands are undergoing rapid environmental change and the need to monitor and manage landscape health is becoming increasingly an imperative of government agencies and research organizations. Remotely sensed ecological indicators of disturbance offer a potential approach, particularly in the context of issues of scale required to assess and monitor extensive rangeland areas. The objective of this research is to analyse the potential of spatially explicit ecological indicators of disturbance to explain the spatial variability in species diversity and abundance (including introduced flora species) in rangelands. For two mapped rangeland ecosystem types in northern Australia, regression analysis was used to explore the relationships between species diversity and abundance, and remotely sensed ground cover time series statistics, foliage projective cover, and a precipitation deficit index. It was assumed that the ecosystem types used had been mapped to represent uniform vegetation units and consequently predictors of environmental heterogeneity were not used in the regression analysis. It was found that the predictor variables performed well in explaining the variation in species diversity and abundance for the more open, homogenous and less topographically complex basalt ecosystem type and less effectively for the more structurally complex, more wooded and less disturbed metamorphic ecosystem type. The results indicate that, for mapped ecosystem types with low heterogeneity and topographic complexity, ground cover temporal mean and variance are potentially useful indicators of disturbance to species diversity and abundance, provided the local spatial variability in the climate signal is accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson TM, Metzger KL, McNaughton SJ (2007) Multi-scale analysis of plant species richness in Serengeti grasslands. J Biogeogr 34:313–323. doi:10.1111/j.1365-2699.2006.01598.x

    Article  Google Scholar 

  • Armston JD, Danaher TJ, Collett LJ (2004) A regression approach for mapping woody foliage projective cover in Queensland with Landsat data. In: Proceedings of the 12th Australasian remote sensing and photogrammetry conference. Fremantle, Australia, Oct 2004

  • Ash A, O’Reagain P, McKeon G, Smith MS (1997) Managing climate variability in grazing enterprises: a case study of Dalrymple Shire, north-eastern Australia. In: Hammer GL, Nicholls N, Mitchell C (eds) Symposium on applications of seasonal climate forecasting in agricultural and natural ecosystems. Springer Brisbane, Australia, pp 253–270

  • Bastin GN (2005) Australian collaborative rangeland information system: reporting change in the rangelands, national synthesis of reports from pilot regions. In: Report to the Australian collaborative rangeland information system (ACRIS) management committee CSIRO alice springs

  • Bedward M, Keith DA, Pressey RL (1992) Homogeneity analysis—assessing the utility of classifications and maps of natural-resources. Aust J Ecol 17:133–139. doi:10.1111/j.1442-9993.1992.tb00791.x

    Article  Google Scholar 

  • Benvenuti S (2007) Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol Manag 7:141–157. doi:10.1111/j.1445-6664.2007.00249.x

    Article  Google Scholar 

  • Bestelmeyer BT (2006) Threshold concepts and their use in rangeland management and restoration: the good, the bad, and the insidious. Restor Ecol 14:325–329. doi:10.1111/j.1526-100X.2006.00140.x

    Article  Google Scholar 

  • Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11:1123–1140. doi:10.1890/1051-0761(2001)011[1123:ABISLM]2.0.CO;2

    Article  Google Scholar 

  • Bond WJ, Midgley GF, Woodward FI (2003) What controls South African vegetation—climate or fire? S Afr J Bot 69:79–91

    Google Scholar 

  • Churchill TB, Ludwig JA (2004) Changes in spider assemblages along grassland and savanna grazing gradients in northern Australia. Rangel J 26:3–16. doi:10.1071/RJ04001

    Article  Google Scholar 

  • Collins SL, Smith MD (2006) Scale-dependent interaction of fire and grazing on community heterogeneity in tallgrass prairie. Ecology 87:2058–2067. doi:10.1890/0012-9658(2006)87[2058:SIOFAG]2.0.CO;2

    Article  PubMed  Google Scholar 

  • D’Eon R, Glenn SM, Parfitt I, Fortin MJ (2002) Landscape connectivity as a function of scale and organism vagility in a real forested landscape. Conserv Ecol 6(2)

  • Dickman CR, Mahon PS, Masters P, Gibson DF (1999) Long-term dynamics of rodent populations in arid Australia: the influence of rainfall. Wildl Res 26:389–403. doi:10.1071/WR97057

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR (2008) Deriving consistent long-term vegetation information from AVHRR reflectance data using a cover-triangle-based framework. Remote Sens Environ 112:2938–2949. doi:10.1016/j.rse.2008.02.008

    Article  Google Scholar 

  • Enslin BW, Potgieter ALF, Biggs HC, Biggs R (2000) Long term effects of fire frequency and season on the woody vegetation dynamics of the Sclerocarya birrea/Acacia nigrescens savanna of the Kruger National Park. Koedoe 43:27–37

    Google Scholar 

  • Fensham RJ, Holman JE (1999) Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J Appl Ecol 36:1035–1050. doi:10.1046/j.1365-2664.1999.00460.x

    Article  Google Scholar 

  • Fensham RJ, Fairfax RJ, Holman JE (2002) Response of a rare herb (Trioncinia retroflexa) from semi-arid tropical grassland to occasional fire and grazing. Aust Ecol 27:284–290. doi:10.1046/j.1442-9993.2002.01180.x

    Article  Google Scholar 

  • Fensham RJ, Fairfax RJ, Archer SR (2005) Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. J Ecol 93:596–606. doi:10.1111/j.1365-2745.2005.00998.x

    Article  Google Scholar 

  • Fisher A, Kutt A (2007) Biodiversity and land condition in tropical savanna rangelands: technical report. In tropical savannas CRC, Darwin

  • Fuller DO (1998) Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. Int J Remote Sens 19:2013–2018. doi:10.1080/014311698215135

    Article  Google Scholar 

  • Gillanders SN, Coops NC, Wulder NA, Gergel SE, Nelson T (2008) Multitemporal remote sensing of landscape dynamics and pattern change: describing natural and anthropogenic trends. Prog Phys Geogr 32:503. doi:10.1177/0309133308098363

    Article  Google Scholar 

  • Goulevitch BM, Danaher TJ, Stewart AJ, Harris DP, Lawrence LJ (2002) Mapping woody vegetation cover over the State of Queensland using Landsat TM and ETM + imagery. In: Proceedings of the 11th Australasian remote sensing and photogrammetry conference. Brisbane

  • Grice AC, Campbell SD (2000) Weeds in pasture ecosystems—symptom or disease? Trop Grassl 34:264–270

    Google Scholar 

  • Grossmann EB, Mladenoff DJ (2007) Open woodland and savanna decline in a mixed-disturbance landscape (1938 to 1998) in the northwest Wisconsin (USA) sand plain. Landscape Ecol 22:43–55. doi:10.1007/s10980-007-9113-7

    Article  Google Scholar 

  • Harner RF, Harper KT (1976) Role of area, heterogeneity, and favorability in plant species-diversity of pinyon-juniper ecosystems. Ecology 57:1254–1263. doi:10.2307/1935049

    Article  Google Scholar 

  • Harris AT, Asner GP (2003) Grazing gradient detection with airborne imaging spectroscopy on a semi-arid rangeland. J Arid Environ 55:391–404. doi:10.1016/S0140-1963(02)00253-7

    Article  Google Scholar 

  • Hill MO (1973) Diversity and evenness—unifying notation and its consequences. Ecology 54:427–432. doi:10.2307/1934352

    Article  Google Scholar 

  • Houlder DJ, Hutchinson MF, Nix HA, McMahon JP (2000) ANUCLIM user guide. Centre for Resource and Environmental Studies, Australian National University, Canberra

    Google Scholar 

  • Innes JL, Koch B (1998) Forest biodiversity and its assessment by remote sensing. Glob Ecol Biogeogr 7:397–419. doi:10.1046/j.1466-822X.1998.00314.x

    Article  Google Scholar 

  • Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16:309–330. doi:10.1016/S1364-8152(01)00008-1

    Article  Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305. doi:10.1016/S0169-5347(03)00071-5

    Article  Google Scholar 

  • Kutt AS, Woinarski JCZ (2007) The effects of grazing and fire on vegetation and the vertebrate assemblage in a tropical savanna woodland in north-eastern Australia. J Trop Ecol 23:95–106. doi:10.1017/S0266467406003579

    Article  Google Scholar 

  • Kutt AS, Thurgate NY, Hannah DS (2004) Distribution and habitat of the desert mouse (Pseudomys desertor) in Queensland. Wildl Res 31:129–142. doi:10.1071/WR02005

    Article  Google Scholar 

  • Landsberg J, James CD, Morton SR, Muller WJ, Stol J (2003) Abundance and composition of plant species along grazing gradients in Australian rangelands. J Appl Ecol 40:1008–1024. doi:10.1111/j.1365-2664.2003.00862.x

    Article  Google Scholar 

  • Leyequien E, Verrelst J, Slot M, Schaepman-Strub G, Heitkönig IMA, Skidmore A (2007) Capturing the fugitive: applying remote sensing to terrestrial animal distribution and diversity. Int J Appl Earth Obs Geoinf 9:1–20. doi:10.1016/j.jag.2006.08.002

    Article  Google Scholar 

  • Ludwig JA, Bastin GN, Eager RW, Karfs R, Ketner P, Pearce G (2000) Monitoring Australian rangeland sites using landscape function indicators and ground- and remote-based techniques. Environ Monit Assess 64:167–178. doi:10.1023/A:1006475825546

    Article  Google Scholar 

  • Ludwig JA, Bastin GN, Wallace JF, McVicar TR (2007) Assessing landscape health by scaling with remote sensing: when is it not enough? Landscape Ecol 22:163–169. doi:10.1007/s10980-006-9038-6

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • McVicar TR, Jupp DLB (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric Syst 57:399–468. doi:10.1016/S0308-521X(98)00026-2

    Article  Google Scholar 

  • Millington AC, Velez-Liendo XM, Bradley AV (2003) Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J Photogramm Remote Sens 57:289–299. doi:10.1016/S0924-2716(02)00154-5

    Article  Google Scholar 

  • Minor TB, Lancaster J, Wade TG, Wickham JD, Whitford W, Jones KB (1999) Evaluating change in rangeland condition using multitemporal AVHRR data and geographic information system analysis. Environ Monit Assess 59:211–223. doi:10.1023/A:1006126622200

    Article  Google Scholar 

  • Muldavin EH, Neville P, Harper G (2001) Indices of grassland biodiversity in the Chihuahuan desert ecoregion derived from remote sensing. Conserv Biol 15(15):844–855. doi:10.1046/j.1523-1739.2001.015004844.x

    Article  Google Scholar 

  • Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400. doi:10.1080/01431160117096

    Article  Google Scholar 

  • Neldner VJ, Wilson BA, Thompson EJ, Dillewaard HA (2004) Methodology for survey and mapping of regional ecosystems and vegetation communities in Queensland. Version 3. In Queensland environmental protection agency Brisbane

  • O’Reagain PJ (2001) Foraging strategies on rangelands: effects on intake and animal performance. In: Gomide JA, Mattos WRS, Silva SCd (eds) Grassland ecosystems: an outlook into the 21st century. Proceedings of the XIX international grassland congress. Sao Pedro, Brazil, pp 277–284

  • O’Reagain P, Bushell J (1999) Testing grazing strategies for the seasonably variable tropical savannas. In: Eldridge DFD (ed) VIth international rangeland congress. Vi Int Rangeland Congress Inc Townsville, Australia, pp 485–486

  • Phelps DG, Bosch OJH (2002) A quantitative state and transition model for the Mitchell grasslands of central western Queensland. Rangel J 24:242–267. doi:10.1071/RJ02014

    Article  Google Scholar 

  • Pickup G, Bastin GN (1997) Spatial distribution of cattle in arid rangelands as detected by patterns of change in vegetation cover. J Appl Ecol 34:657–667. doi:10.2307/2404914

    Article  Google Scholar 

  • Pickup G, Bastin GN, Chewings VH (1998) Identifying trends in land degradation in non-equilibrium rangelands. J Appl Ecol 35:365–377. doi:10.1046/j.1365-2664.1998.00319.x

    Article  Google Scholar 

  • Power S, Tseitkin F, Mehta V, Lavery B, Torok S, Holbrook N (1999) Decadal climate variability in Australia during the twentieth century. Int J Climatol 19:169–184. doi:10.1002/(SICI)1097-0088(199902)19:2<169::AID-JOC356>3.0.CO;2-Y

    Article  Google Scholar 

  • Puigdefabregas J (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Process Landf 30:133–147. doi:10.1002/esp.1181

    Article  Google Scholar 

  • S-PLUS (1999) S-PLUS 2000 guide to statistics. Data analysis products division. MathSoft, Seattle

    Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Annu Rev Ecol Syst 28:517–544. doi:10.1146/annurev.ecolsys.28.1.517

    Article  Google Scholar 

  • Smyth AK, James CD (2004) Characteristics of Australia’s rangelands and key design issues for monitoring biodiversity. Aust Ecol 29:3–15. doi:10.1111/j.1442-9993.2004.01360.x

    Article  Google Scholar 

  • Sternberg M, Gutman M, Perevolotsky A, Ungar ED, Kigel J (2000) Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J Appl Ecol 37:224–237. doi:10.1046/j.1365-2664.2000.00491.x

    Article  Google Scholar 

  • Suppiah R, Hennessy KJ (1998) Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int J Climatol 18:1141–1164. doi:10.1002/(SICI)1097-0088(199808)18:10<1141::AID-JOC286>3.0.CO;2-P

    Article  Google Scholar 

  • Tegler B, Sharp M, Johnson MA (2001) Ecological monitoring and assessment network’s proposed core monitoring variables: an early warning of environmental change. Environ Monit Assess 67:29–55. doi:10.1023/A:1006479516184

    Article  PubMed  CAS  Google Scholar 

  • Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18(18):306–314. doi:10.1016/S0169-5347(03)00070-3

    Article  Google Scholar 

  • Vos P, Meelis E, Ter Keurs WJ (2000) A framework for the design of ecological monitoring programs as a tool for environmental and nature management. Environ Monit Assess 61:317–344. doi:10.1023/A:1006139412372

    Article  CAS  Google Scholar 

  • Washington-Allen RA, West NE, Ramsey RD, Efroymson RA (2006) A protocol for retrospective remote sensing-based ecological monitoring of rangelands. Rangel Ecol Manag 59:19–29. doi:10.2111/04-116R2.1

    Article  Google Scholar 

  • Watson IW, Novelly PE, Thomas PWE (2007) Monitoring changes in pastoral rangelands—the western Australian rangeland monitoring system (WARMS). Rangel J 29:191–205. doi:10.1071/RJ07008

    Article  Google Scholar 

  • Woinarski JCZ, Fisher A, Milne D (1999) Distribution patterns of vertebrates in relation to an extensive rainfall gradient and variation in soil texture in the tropical savannas of the northern territory, Australia. J Trop Ecol 15:381–398. doi:10.1017/S0266467499000905

    Article  Google Scholar 

  • Woinarski JC, Connors G, Franklin DC (2000) Thinking honeyeater: nectar maps for the northern territory, Australia. Pac Conserv Biol 6:61–80

    Google Scholar 

  • Woinarski JZC, Andersen AN, Churchill TB, Ash AJ (2002) Response of ant and terrestrial spider assemblages to pastoral and military land use, and to landscape position, in a tropical savanna woodland in northern Australia. Aust Ecol 27:324–333. doi:10.1046/j.1442-9993.2002.01183.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the help of numerous landholders in granting us access to their properties for the survey. This project was funded by the Tropical Savannas Co-operative Research Centre, Land and Water Australia and CSIRO Sustainable Ecosystems, the Queensland Environmental Protection Agency, and the Australian Rivers Institute, Griffith University. Thanks to Lindsay Jones for assistance with GIS work. This publication was improved through the valuable comments of John Ludwig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug P. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, D.P., Kutt, A.S. Rangeland biodiversity assessment using fine scale on-ground survey, time series of remotely sensed ground cover and climate data: an Australian savanna case study. Landscape Ecol 24, 495–507 (2009). https://doi.org/10.1007/s10980-009-9324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-009-9324-1

Keywords

Navigation