Skip to main content

Advertisement

Log in

Developing a multi-scale visualisation framework for use in climate change response

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Climate change is predicted to impact countries, regions and localities differently. However, common to the predicted impacts is a global trend toward increased levels of carbon dioxide and rising sea levels. Governments and communities need to take into account the likely impacts of climate on the landscape, both built and natural. There is a growing and significant body of climate change research. Much of this information produced by domain experts for a range of disciplines is complex and difficult for planners, decision makers and communities to act upon. The need to communicate often complex scientific information which can be used to assist in the planning cycle is a key challenge. This paper draws from a range of international examples of the use of visualisation in the context of landscape planning to communicate climate change impact and adaptation options within the context of the planning cycle. Missing from the literature, however, is a multi-scalar approach which allows decision makers, planners and communities to seamlessly explore scenarios at their special level of interest, as well as to collectively understand what is driving these at a larger scale, and what the implications are at ever more local levels. Visualisation tools such as digital globes provide one way to bring together multi-scaled spatial–temporal datasets. We present an initial development with this goal in mind. Future research is required to determine the best tools for communicating particular complex scientific data and also to better understand how visualisation can be used to improve the landscape planning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antonson H (2009) Landscapes with history: addressing shortcomings in Swedish EIAs. Land Use Policy 26:704–714

    Article  Google Scholar 

  • Appleton K, Lovett A (2003) GIS-based visualisation of rural landscapes: defining ‘sufficient’ realism for environmental decision-making. Landsc Urban Plan 65:117–131

    Article  Google Scholar 

  • Auclair D, Barczi JF, Borne F, Étienne M (2001) Assessing the visual impact of agroforestry management with landscape design software. Landsc Res 26:397–406

    Article  Google Scholar 

  • Aurambout J-P, Pettit C, Lewis H (2008) Virtual globes: the next GIS. In: Pettit C, Cartwright W, Bishop I et al (eds) Landscape analysis and visualisation. Springer, Berlin, pp 509–532

    Chapter  Google Scholar 

  • Aurambout JP, Findlay KJ, Luck J, Beattie GAC (2009) A concept model to estimate the potential distribution of Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—a means for assessing biosecurity risk. Ecol Model 220:2512–2524

    Article  Google Scholar 

  • Baldwin C, Chandler L (2010) At the water’s edge: community voices on climate change. Local Environ 15(7):637–649

    Article  Google Scholar 

  • Barton H, Davis G, Guise R (1995) Sustainable settlements—a guide to planners, designers and developers. University of West England, Bristol

    Google Scholar 

  • Benke K, Pettit C, Lowell K (2011) Visualisation of spatial uncertainty in hydrological modelling. Spat Sci J 56(1):73–88

    Article  Google Scholar 

  • Bennett RM, Pettit C, Aurambout JP, Sheth F, Senot H, Soste L, Sposito, V (2010) Visualizing climate change impact with ubiquitous spatial technologies. In: Guilbert E, Lees B, Leung Y (eds) Joint international conference on theory, data handling and modelling in geospatial information science, ISPRS Technical Commission II, Hong Kong, pp 461–466

  • Bishop ID, Stock C (2010) Using collaborative virtual environments to plan wind energy installations. Renew Energy 35:2348–2355

    Article  Google Scholar 

  • Brown I, Jude S, Koukoulas S, Nicholls R, Dickson M, Walkden M (2006) Dynamic simulation and visualisation of coastal erosion. Comput Environ Urban 30:840–860

    Article  Google Scholar 

  • Checkland P (1981) Systems thinking, systems practice. Wiley, Chichester

    Google Scholar 

  • Costanza R, Voinov A (2001) Modeling ecological and economic systems with STELLA: part III. Ecol Model 143:1–7

    Article  Google Scholar 

  • Counsell J, Richman A, Holding A (2009) Evaluation of 3D visualisation in the virtual environmental planning systems project. In: Proceedings of the second international conference in visualisation, IEEE Computer Society, pp 108–113

  • Cullen B, Johnson I, Eckard R, Lodge G, Walker R, Rawnsley R, McCaskill M (2009) Climate change impacts on Australian pasture systems. Crop Pasture Sci 60:933–942

    Article  Google Scholar 

  • Daniel TC, Meitner MM (2001) Representational validity of landscape visualisations: the effects of graphic realism on perceived scenic beauty of forest vistas. J Environ Psychol 21:61–72

    Article  Google Scholar 

  • De Bérigny Wall C (2010) Interantarctica: an interactive environmental installation. In: Proceedings of IEEE international conference on multimedia and expo, pp 1629–1634

  • DiBiase D, MacEachren AM, Krygier JB, Reeves C (1992) Animation and the role of map design in scientific visualization. Cartogr Geogr Inf 19(4):201–214

    Article  Google Scholar 

  • Dockerty T, Lovett A, Sünnenberg G, Appleton K, Parry M (2005) Visualising the potential impacts of climate change on rural landscapes. Comput Environ Urban 29:297–320

    Article  Google Scholar 

  • Dockerty T, Lovett A, Appleton K, Bone A, Sünnenberg G (2006) Developing scenarios and visualisations to illustrate potential policy and climatic influences on future agricultural landscapes. Agric Ecosyst Environ 114:103–120

    Article  Google Scholar 

  • Edelson DC, Gordin D (1998) Visualisation for learners: a framework for adapting scientists’ tools. Comput Geosci 24:607–616

    Article  Google Scholar 

  • Ganguly AR, Steinhaeuser K, Sorokine A, Parish ES, Kao SC, Branstetter, M (2009) Demo paper: geographic analysis and visualisation of climate extremes for the Quadrennial Defence Review. In: 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 542–543

  • Gaucherel C, Griffon S, Misson L, Houet T (2010) Combining process-based models for future biomass assessment at landscape scale. Landscape Ecol 25:201–215

    Article  Google Scholar 

  • Goldsmith D, Liarokapis F, Malone G, Kemp J (2008) Augmented reality environmental monitoring using wireless sensor networks. In: Proceedings of the 12th international conference on information visualisation. IEEE Computer Society, London, pp 539–544

  • Grêt-Regamey A, Bishop ID, Bebi P (2007) Predicting the scenic beauty value of mapped landscape changes in a mountainous region using GIS. Environ Plan B 34:50–67

    Article  Google Scholar 

  • Gunderson LH, Holling CS (eds) (2002) Panarchy—understanding transformations in human and natural human systems. Island Press, Washington, DC

    Google Scholar 

  • Hehl-Lange S (2001) Structural elements in the visual landscape and their ecological functions. Landsc Urban Plan 54:105–114

    Article  Google Scholar 

  • Jern M (2009) Collaborative web-enabled geoanalytics applied to OECD regional data. In: Luo Y (ed) Cooperative design, visualisation and engineering. Springer, Heidelberg, pp 32–43

  • Jern M, Nilsson A (2002) Collaborative climate 3D viewer. In: Brebbia CA, Pascolo P (eds) Management information systems 2002: GIS and remote sensing. WIT Press, Southampton, pp 63–72

    Google Scholar 

  • Jin H, Guo D (2009) Understanding climate change patterns with multivariate geovisualisation. In: Proceedings IEEE international conference on data mining workshops, Miami, USA, pp 217–222

  • Jude SR, Jones AP, Watkinson AR, Brown I, Gill JA (2007) The development of a visualisation methodology for integrated coastal management. Coast Manag 35:525–544

    Article  Google Scholar 

  • Kim T, Hong H, Magerko B (2009) Coralog: use-aware visualisation connecting human micro-activities to environmental change. In: Proceedings 27th international conference on human factors in computing systems, Boston, USA, pp 4303–4308

  • Klosterman RE (1999) The what if? Collaborative planning support system. Environ Plan B 26:393–408

    Article  Google Scholar 

  • Laing R, Davies A, Scott S (2005) Combining visualisation with choice experimentation in the built environment. In: Bishop ID, Lange E (eds) Visualisation for landscape and environmental planning: technology and applications. Taylor & Francis, London, pp 212–219

    Google Scholar 

  • Lange E (2001) The limits of realism: perceptions of virtual landscapes. Landsc Urban Plan 54:163–182

    Article  Google Scholar 

  • Lange E (2011) 99 Volumes later: we can visualise. Now what? Landsc Urban Plan 100:403–406

    Article  Google Scholar 

  • Lovett A (2005) Futurescapes. Comput Environ Urban 29:249–253

    Article  Google Scholar 

  • MacEachren AM, Kraak M-J (1997) Exploratory cartographic visualisation: advancing the agenda. Comput Geosci 23:335–344

    Article  Google Scholar 

  • MacFarlane R, Stagg H, Turner K, Lievesley M (2005) Peering through the smoke? Tensions in landscape visualisation. Comput Environ Urban 29:341–359

    Article  Google Scholar 

  • Manzo K (2010) Beyond polar bears? Re-envisioning climate change. Meteorol Appl 17:196–208

    Article  Google Scholar 

  • Martello ML (2008) Arctic indigenous peoples as representations and representatives of climate change. Soc Stud Sci 38:351–375

    Article  PubMed  Google Scholar 

  • Meitner MJ, Sheppard SRJ, Cavens D, Gandy R, Picard P, Harshaw H, Harrison D (2005) The multiple roles of environmental data visualisation in evaluating alternative forest management strategies. Comput Electron Agric 49:192–205

    Article  Google Scholar 

  • Nicholson-Cole SA (2005) Representing climate change futures: a critique on the use of images for visual communication. Comput Environ Urban 29:255–273

    Article  Google Scholar 

  • Nocke T, Sterzel T, Böttinger M, Wrobel M (2008) Visualisation of climate and climate change data: an overview. In: Ehlers M, Behncke K, Gerstengabe FW et al (eds) Digital Earth summit on geoinformatics 2008: tools for climate change research, Wichmann, pp 226–232

  • Overpeck JT, Meehl GA, Sandrine B, Easterling DR (2011) Climate data challenges in the 21st century. Science 331:700–702

    Article  PubMed  CAS  Google Scholar 

  • Paar P, Röhricht W, Schuler J (2008) Towards a planning support system for environmental management and agri-environmental measures-the Colorfields study. J Environ Manag 89:234–244

    Article  Google Scholar 

  • Paul F, Maisch M, Rothenbühler C, Hoelzle M, Haeberli W (2007) Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling. Global Planet Change 55:343–357

    Article  Google Scholar 

  • Pettit C, Aurambout J-P, Sheth F, Sposito V, O’Leary G, Eckard R (2010) Using Google Earth to visualise climate change scenarios in South-West Victoria. In: Jubb I, Hoper P, Cai W (eds) Managing climate change: papers from the GREENHOUSE 2009 conference. CSIRO Publishing, Collingwood

    Google Scholar 

  • Pettit CJ, Raymond CM, Bryan BA, Lewis H (2011) Identifying strengths and weaknesses of landscape visualisation for effective communication of future alternatives. Landsc Urban Plan 10:231–241

    Article  Google Scholar 

  • Rekittke J, Paar P (2005) Enlightenment approaches for digital absolutism—diplomatic stepping-stones between the real and the envisioned. In: Buhmann E, Paar P, Bishop ID et al (eds) Trends in real-time visualisation and participation. Anhalt University of Applied Sciences, Wichmann, pp 210–224

    Google Scholar 

  • Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camacho A, Root TL, Sala OE, Schneider SH, Ashe DM, Clark JR, Early R, Etterson JR, Fielder ED, Gill JL, Minteer BA, Polasky S, Safford HD, Thompson AR, Vellend M (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721–9724

    Google Scholar 

  • Rittel HWJ, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169

    Article  Google Scholar 

  • Salter JD, Campbell C, Journeay M, Sheppard SRJ (2009) The digital workshop: exploring the use of interactive and immersive visualisation tools in participatory planning. J Environ Manag 90:2090–2101

    Article  Google Scholar 

  • Schroth O (2010) From information to participation. Interactive landscape visualization as a tool for collaborative planning, p 224. University Press of the Swiss Federal Institute of Technology, Zurich. http://www.vdf.ethz.ch/vdf.asp?showArtDetail=3222

  • Schroth O, Wissen U, Schmid WA (2006) Developing new images of rurality: interactive 3D visualisations for participative landscape planning workshops in the Entlebuch UNESCO biosphere reserve. disP Plan Rev 166:26–34

    Google Scholar 

  • Schuck TM (2010) An extended enterprise architecture for a network-enabled, effects-based approach for national park protection. Syst Eng 13:209–216

    Article  Google Scholar 

  • Selman P (2004) Community participation in planning and management of cultural landscapes. J Environ Plan Manag 47:365–392

    Article  Google Scholar 

  • Shaw A, Sheppard SRJ, Burch S, Flanders D, Wiek A, Carmichael J, Robinson J, Cohen S (2009) Making local futures tangible—synthesizing, downscaling, and visualizing climate change scenarios for participatory capacity building. Glob Environ Chang 19:447–463

    Article  Google Scholar 

  • Sheppard SRJ (2001) Guidance for crystal ball gazers: developing a code of ethics for landscape visualisation. Landsc Urban Plan 54:183–199

    Article  Google Scholar 

  • Sheppard SRJ (2005) Landscape visualisation and climate change: the potential for influencing perceptions and behaviour. Environ Sci Policy 8:637–654

    Article  Google Scholar 

  • Sheppard SRJ, Cizek P (2009) The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. J Environ Manag 90:2102–2117

    Article  Google Scholar 

  • Shove E (2010) Beyond the ABC: climate change policy and theories of social change. Environ Plan A 42:1273–1285

    Article  Google Scholar 

  • Sisneros R, Glatter M, Langley B, Huang J, Hoffman F, Erickson Iii DJ (2008) Time-varying multivariate visualisation for understanding terrestrial biogeochemistry. J Phys Conf Ser 125:012093

    Article  Google Scholar 

  • Smith EL (2011) Scenario based evaluation of landscape futures: tools for development, presentation and assessment. University of Melbourne, Melbourne

    Google Scholar 

  • Soliva R, Hunziker M (2009) Beyond the visual dimension: using ideal type narratives to analyse people’s assessments of landscape scenarios. Land Use Policy 26:284–294

    Article  Google Scholar 

  • Sposito V, Benke K, Pelizaro C, Wyatt R (2010) Adaptation to climate change in regional Australia: a decision-making framework for modelling policy for rural production. Geogr Compass 4:335–354

    Article  Google Scholar 

  • Sriprasert E, Dawood N (2003) Multi-constraint information management and visualisation for collaborative planning and control in construction. Electron J Inf Technol Constr 8:341–366

    Google Scholar 

  • Steiner F (2008) The living landscape—an ecological approach to landscape planning. Island Press, Washington, DC

    Google Scholar 

  • Steinitz C (1990) Toward a sustainable landscape with high visual preference and high ecological integrity: the Loop Road in Acadia National Park, USA. Land Urban Plan 19(3):213–250

    Article  Google Scholar 

  • Stern N (2008) The Stern review report on the economics of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tress B, Tress G (2003) Scenario visualisation for participatory landscape planning—a study from Denmark. Land Urban Plan 64:161–178

    Article  Google Scholar 

  • Vatsavai RR (2009) BioMon: a Google Earth based continuous biomass monitoring system (demo paper). Presented at the ACM international symposium on advances in geographic information systems, Washington, USA, pp 536–537

  • von Haaren C, Warren-Kretzschmar B (2006) The interactive landscape plan: use and benefits of new technologies in landscape planning and discussion of the interactive landscape plan in Koenigslutter am Elm, Germany. Landsc Res 31:83–105

    Article  Google Scholar 

  • Williams DN, Doutriaux M, Drach RS, McCoy RB (2009) The flexible climate data analysis tools (CDAT) for multimodel climate simulation data. In: ICDM workshops 2009, IEEE international conference on data mining, pp 254–261

  • Wissen U, Schroth O, Lange E, Schmid WA (2008) Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations. J Environ Manag 89:184–196

    Article  Google Scholar 

  • Wong PC, Leung LR, Lu N, Scott MJ, Mackey P, Foote H, Correia Jr J, Taylor ZT, Xu J, Unwin SD, Sanfilippo A (2009) Designing a collaborative visual analytics tool for social and technological change prediction. IEEE Comput Graph 29:58–68

    Article  Google Scholar 

  • Yabuki N, Limsupreeyarat P, Tongthong T (2010) Collaborative and visualized safety planning for construction performed at high elevation. In: Luo Y (ed) Cooperative design, visualisation and engineering. Springer, Heidelberg, pp 282–285

    Chapter  Google Scholar 

  • Yehezkel D (1963) The planning process: a facet of design. Int Rev Adm Sci 29(1):46–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Pettit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettit, C., Bishop, I., Sposito, V. et al. Developing a multi-scale visualisation framework for use in climate change response. Landscape Ecol 27, 487–508 (2012). https://doi.org/10.1007/s10980-012-9716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9716-5

Keywords

Navigation