Skip to main content

Advertisement

Log in

Planning for the future: identifying conservation priority areas for Iberian birds under climate change

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.

Objectives

We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.

Methods

We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.

Results

19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.

Conclusions

We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. J Appl Ecol 51:703–713

    Article  Google Scholar 

  • Alagador D, Cerdeira JO, Araújo MB (2016) Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol Evol 7:853–866

    Article  Google Scholar 

  • Álvarez-Martínez JM, Suárez-Seoane S, De Luis Calabuig E (2011) Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: the role of uncertainty. Landsc Urban Plan 101:108–119

    Article  Google Scholar 

  • Araújo MB (2009) Climate change and spatial conservation planning. In: Moilanen A, Possingham H, Wilson K (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 172–184

    Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W, Hannah L,  Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626

    Article  Google Scholar 

  • Araújo MB, Guilhaumon F, Neto DR, Pozo I, Calmaestra R (2012) Biodiversidade e Alterações Climáticas/Biodiversidad y Alteraciones Climáticas. Ministério do Ambiente e Ordenamento do Território & Ministerio de Medio Ambiente y Medio Rural y Marino, Lisboa

    Google Scholar 

  • Araújo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conserv Biol 21:1423–1432

    Article  PubMed  Google Scholar 

  • Araújo MB, Nogués-Bravo D, Reginster I, Rounsevell M,  Whittaker RJ (2008) Exposure of European biodiversity to changes in human-induced pressures. Environ Sci Policy 11:38–45

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Assunção-Albuquerque MJT, Rey Benayas JM, Albuquerque FS, Rodríguez MÁ (2012) The geography of high-value biodiversity areas for terrestrial vertebrates in Western Europe and their coverage by protected area networks. Web Ecol 12:65–73

    Article  Google Scholar 

  • Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Baselga A, Araújo MB (2010) Do community-level models describe community variation effectively? J Biogeogr 37:1842–1850

    Google Scholar 

  • Beier P, Hunter ML, Anderson M (2015) Introduction to special section: conserving nature’s stage. Conserv Biol 29:613–617

    Article  PubMed  Google Scholar 

  • Brommer JE, Møller AP (2010) Range margins, climate change, and ecology. In: Møller AP, Fieldler W, Berthlod P (eds) Effects of climate change on birds. Oxford University Press, Oxford

    Google Scholar 

  • Carrascal LM, Lobo JM (2003) Respuestas a viejas preguntas con nuevos datos: estudio de los patrones de distribución de la avifauna española y consecuencias para su conservación. In: Martí R, Del Moral JC (eds) Ministerio de Medio Ambiente—SEO/BirdLife M (ed) Atlas de las aves reproductoras de España, pp 651–668, 718–721

  • Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Change Biol 16:891–904

    Article  Google Scholar 

  • Civantos E, Thuiller W, Maiorano L, Guisan A, Araújo MB (2012) Potential impacts of climate change on ecosystem services in Europe: the case of pest control by vertebrates. Bioscience 62:658–666

    Article  Google Scholar 

  • Convention Biological Diversity (2010) Aichi biodiversity targets of the strategic plan 2011–2020. http://www.cbd.int/sp/targets/

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • Dendoncker N, Rounsevell M, Bogaert P (2007) Spatial analysis and modelling of land use distributions in Belgium. Comput Environ Urban Syst 31:188–205

    Article  Google Scholar 

  • Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliola J, Herrando S, Julliard R, Kuussaari M, Lindström A, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124

    Article  Google Scholar 

  • Eklund J, Arponen A, Visconti P, Cabeza M (2011) Governance factors in the identification of global conservation priorities for mammals. Philos Trans R Soc B 366:2661–2669

    Article  Google Scholar 

  • Equipa Atlas (2008) Atlas das aves nidificantes em Portugal (1999-2005). Assírio & Alvim, Lisboa

    Google Scholar 

  • Europarc-España (2014) EUROPARC-España Anuario 2013 del estado de las áreas protegidas en España

  • European Environmental Agency (2000) CORINE land cover. European Environmental Agency, Luxembourg

    Google Scholar 

  • Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7:149–157

    Article  Google Scholar 

  • Fordham DA, Akçakaya HR, Brook BW, Rodríguez A, Alves PC, Civantos E, Triviño M, Watts MJ, Araújo MB (2013) Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat Clim Change 3:899–903  

    Article  Google Scholar 

  • Forero-Medina G, Terborgh J, Socolar SJ, Pimm SL (2011) Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS ONE 6:e28535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia RA, Cabeza M, Altwegg R, Araújo MB (2016) Do projections from bioclimatic envelope models and climate change metrics match? Glob Ecol Biogeogr 25:65–74

    Article  Google Scholar 

  • Garden JG, O’Donnell T, Catterall CP (2015) Changing habitat areas and static reserves: challenges to species protection under climate change. Landscape Ecol 30:1959–1973

    Article  Google Scholar 

  • Gil-Tena A, Brotons L, Saura S (2009) Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob Change Biol 15:474–485

    Article  Google Scholar 

  • Gil-Tena A, Saura S, Brotons L (2007) Effects of forest composition and structure on bird species richness in a Mediterranean context: implications for forest ecosystem management. For Ecol Manage 242:470–476

    Article  Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo MB, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138  

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Hernández-Manrique OL, Numa C, Verdú JR, Galante E, Lobo JM (2012) Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conserv Divers 5:414–421  

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C, Huntley B (2009) Projected impacts of climate change on a continent-wide protected area network. Ecol Lett 12:420–431

    Article  PubMed  Google Scholar 

  • Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG (2015) The drivers of avian abundance: patterns in the relative importance of climate and land use. Glob Ecol Biogeogr 24:1249–1260

    Article  Google Scholar 

  • Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE 3:e1439

    Article  PubMed  PubMed Central  Google Scholar 

  • ICNF (2013) Instituto da Conservação da Natureza e das Florestas. http://www.icnf.pt/portal/naturaclas/rn2000/rn-pt/rn-PT. Accesed 10 Aug 2015

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarzyna MA, Zuckerberg B, Finley AO, Porter WF (2016) Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landscape Ecol 31:2275–2290

    Article  Google Scholar 

  • Jenkins CN, Joppa L (2010) Considering protected area category in conservation analyses. Biol Conserv 143:7–8

    Article  Google Scholar 

  • Kujala H, Moilanen A, Araújo MB, Cabeza M (2013) Conservation planning with uncertain climate change projections. PLoS ONE 8:e53315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lung T, Meller L, van Teeffelen AJA, Thuiller W, Cabeza M (2014) Biodiversity funds and conservation needs in the EU under climate change. Conserv Lett 7:390–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Madroño A, González C, Atienza JC (2004) Libro rojo de las aves de España. Dirección General para la Biodiversidad-SEO/Birdlife, Madrid

    Google Scholar 

  • MAGRAMA (2013) Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/cartografia_informacion_disp.aspx

  • Martí R, del Moral JC (2003) Atlas de las aves reproductoras de España. Dirección General de Conservación de la Naturaleza & Sociedad Española de Ornitología, Madrid

    Google Scholar 

  • Martínez I, Carreño F, Escudero A, Rubio A (2006) Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network. Biol Conserv 133:500–511

    Article  Google Scholar 

  • Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089

    Article  PubMed  Google Scholar 

  • Moilanen A, Kujala H (2008) Zonation spatial conservation planning framework and software v. 2.0

  • Moilanen A, Meller L, Leppänen J, Pouzols FM, Arponen A, Kujala H (2012) Zonation—spatial conservation planning framework and software. Version 3.1. User manual, Helsinki, Finland. http://www.helsinki.fi/bioscience/consplan/software/Zonation/index.html

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Change Biol 9:647–655

    Article  Google Scholar 

  • Phillips SJ, Williams P, Midgley G, Archer A (2008) Optimizing dispersal corridors for the Cape Proteaceae using network flow. Ecol Appl 18:1200–1211

    Article  PubMed  Google Scholar 

  • Regos A, D’Amen M, Titeux N, Herrando S, Guisan A, Brotons L (2016) Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96

    Article  Google Scholar 

  • Rey Benayas JM, Martins A, Nicolau JM, Schulz JJ (2007) Abandonment of agricultural land: an overview of drivers and consequences. CAB Reviews 2:1–14

    Article  Google Scholar 

  • Roth T, Plattner M, Amrhein V (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9:e82490

    Article  PubMed  PubMed Central  Google Scholar 

  • Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpaa S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13

    Article  Google Scholar 

  • Tellería JL, Fernández-López J, Fandos G (2016) Effect of climate change on Mediterranean winter ranges of two migratory passerines. PLoS ONE 11:e0146958

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas CD, Gillingham PK (2015) The performance of protected areas for biodiversity under climate change. Biol J Linn Soc 115:718–730

    Article  Google Scholar 

  • Thomas CD, Gillingham PK, Bradbury RB, Roy DB, Anderson BJ, Baxter JM, Bourn NAD, Crick HQP, Findon RA, Fox R, Hodgson JA, Holt AR, Morecroft MD, O'Hanlon NJ, Oliver TH, Pearce-Higgins JW, Procter DA, Thomas JA, Walker KJ, Walmsley CA, Wilson RJ, Hill JK (2012) Protected areas facilitate species’ range expansions. Proc Natl Acad Sci 109:14063–14068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Guéguen M, Georges D, Bonet R, Chalmandrier L, Garraud L, Renaud J, Roquet C, Van Es J, Zimmermann NE, Lavergne S (2014a) Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography 37:1254–1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Pironon S, Psomas A, Barbet-Massin M, Jiguet F, Lavergne S, Pearman PB, Renaud J, Zupan L, Zimmermann NE (2014b) The European functional tree of bird life in the face of global change. Nat Commun 5:3118

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres A, Palacín C, Seoane J, Alonso J (2011) Assessing the effects of a highway on a threatened species using Before–During–After and Before–During–After-Control–Impact designs. Biol Conserv 144:2223–2232

    Article  Google Scholar 

  • Triviño M, Cabeza M, Thuiller W, Hickler T, Araújo MB (2013) Risk assessment for Iberian birds under global change. Biol Conserv 168:192–200  

    Article  Google Scholar 

  • Triviño M, Thuiller W, Cabeza M, Hickler T, Araújo MB (2011) The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds. PLoS ONE 6:e29373

    Article  PubMed  PubMed Central  Google Scholar 

  • Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197

    Article  Google Scholar 

  • Vallecillo S, Brotons L, Herrando S (2008) Assessing the response of open-habitat bird species to landscape changes in Mediterranean mosaics. Biodivers Conserv 17:103–119

    Article  Google Scholar 

  • Verhulst J, Báldi A, Kleijn D (2004) Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agric Ecosyst Environ 104:465–473

    Article  Google Scholar 

  • Williams P, Hannah L, Andelman S, Midgley G, Araújo MB, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape proteaceae. Conserv Biol 19:1063–1074

    Article  Google Scholar 

  • Williams PH, Humphries C, Araújo MB, Lampinen R, Hagemeijer W, Gasc J-P, Mitchell-Jones T (2000) Endemism and important areas for conserving European biodiversity: a preliminary exploration of atlas data for plants and terrestrial vertebrates. Belg J Entomol 2:21–46

    Google Scholar 

Download references

Acknowledgements

M.T. thanks Wilfried Thuiller, the participants of the Ibiochange Lab Retreat, the jury of her PhD defense and people from the Journal Club in Jyväskylä for insightful comments and suggestions. M.T. also thanks the Metapopulation Research Centre at the University of Helsinki for providing the supportive environment in which much of this work was developed. We thank two anonymous reviewers and the associated editor for their helpful comments. M.T. is supported by a FPI-MICINN fellowship and KONE foundation; H.K. by the LUOVA Doctoral Programme and the Australian National Environmental Research Program (NERP); M.C. by the Academy of Finland (Grant #257686).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Triviño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triviño, M., Kujala, H., Araújo, M.B. et al. Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landscape Ecol 33, 659–673 (2018). https://doi.org/10.1007/s10980-018-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0626-z

Keywords

Navigation