Skip to main content
Log in

Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Movement is one of the key mechanisms for animals to deal with changes within their habitats. Therefore, resource variability can impact animals’ home range formation, especially in spatially and temporally highly dynamic landscapes, such as farmland. However, the movement response to resource variability might depend on the underlying landscape structure.

Objectives

We investigated whether a given landscape structure affects the level of home range size adaptation in response to resource variability. We tested whether increasing resource variability forces herbivorous mammals to increase their home ranges.

Methods

In 2014 and 2015 we collared 40 European brown hares (Lepus europaeus) with GPS-tags to record hare movements in two regions in Germany with differing landscape structures. We examined hare home range sizes in relation to resource availability and variability by using the normalized difference vegetation index as a proxy.

Results

Hares in simple landscapes showed increasing home range sizes with increasing resource variability, whereas hares in complex landscapes did not enlarge their home range.

Conclusions

Animals in complex landscapes have the possibility to include various landscape elements within their home ranges and are more resilient against resource variability. But animals in simple landscapes with few elements experience shortcomings when resource variability becomes high. The increase in home range size, the movement related increase in energy expenditure, and a decrease in hare abundances can have severe implications for conservation of mammals in anthropogenic landscapes. Hence, conservation management could benefit from a better knowledge about fine-scaled effects of resource variability on movement behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson DP, Forester JD, Turner MG, Frair J, Merrill E, Fortin D, Beyer HL, Mao JS, Boyce MS, Fryxell J (2005) Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landscape Ecol 20:257–271

    Article  Google Scholar 

  • Batáry P, Gallé R, Riesch F, Fischer C, Dormann C C, Mußhoff O, Császár P, Fusaro S, Gayer C, Happe AK, Kurucz K, Molnár D, Rösch V, Wietzke A, Tscharntke T (2017) The former Iron Curtain still drives biodiversity—profit trade-offs in German agriculture. Nat Ecol Evol 1:1279

    Article  PubMed  Google Scholar 

  • Bayerische Vermessungsverwaltung (2014) Geobasisdaten zur tatsächlichen Nutzung. In: http://www.ldbv.bayern.de/produkte/kataster/tat_nutzung.html

  • Bayerisches Landesamt für Statistik und Datenverarbeitung (2016) Erntemengenanteile der Fruchtartgruppen in Bayern 2015 in Prozent. In: https://www.statistik.bayern.de/statistik/landwirtschaft/#

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B (2014) rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 0.8-16. In: Available at http://CRAN.R-project.org/package=rgdal

  • Blaum N, Schwager M, Wichmann MC, Rossmanith E (2012) Climate induced changes in matrix suitability explain gene flow in a fragmented landscape—the effect of interannual rainfall variability. Ecography (Cop) 35:650–660

    Article  Google Scholar 

  • Boersma PD, Rebstock GA (2009) Foraging distance affects reproductive success in Magellanic penguins. Mar Ecol Prog Ser 375:263–275

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York

    Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352

    Article  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 197:516–519

    Article  Google Scholar 

  • Daan S, Deerenberg C, Dijkstra C (1996) Increased daily work precipitates natural death in the kestrel. J Anim Ecol 65:539–544

    Article  Google Scholar 

  • Duncan C, Nilsen EB, Linnell JDC, PettorelliI N (2015) Life-history attributes and resource dynamics determine intraspecific home-range sizes in Carnivora. Remote Sens Ecol Conserv 1:1–12

    Article  Google Scholar 

  • Edwards PJ, Fletcher MR, Berny P (2000) Review of the factors affecting the decline of the European brown hare, Lepus europaeus (Pallas, 1778) and the use of wildlife incident data to evaluate the significance of paraquat. Agric Ecosyst Environ 79(2–3):95–103

    Article  Google Scholar 

  • Eide NE, Jepsen JU, Prestrud PÅL (2004) Spatial organization of reproductive arctic foxes Alopex lagopus: responses to changes in spatial and temporal availability of prey. J Anim Ecol 73:1056–1068

    Article  Google Scholar 

  • Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S, King D, Lindsay KF, Mitchell S, Tischendorf L (2015) Farmlands with smaller crop fields have higher within-field biodiversity. Agric Ecosyst Environ 200:219–234

    Article  Google Scholar 

  • Fischer C, Schröder B (2014) Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agric Ecosyst Environ 189:145–153

    Article  Google Scholar 

  • Fischer C, Thies C, Tscharntke T (2011) Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol Conserv 144:1130–1136

    Article  Google Scholar 

  • Frylestam B (1992) Utilization by brown hares Lepus europaeus, Pallas of field habitats and complimentary food stripes in southern Sweden. In: Bobek B, Perzanowski K, Regelin W (eds) Global Trends in Wildlife Management. Swiat Press, Krakow-Warszawa, pp 259–261

    Google Scholar 

  • Google Maps (2017) Map of Nordwestuckermark and Freising. [online]. Google. Available from: https://www.google.de/maps/place/Nordwestuckermark/@53.3161736,13.6173236,12z/data=!3m1!4b1!4m5!3m4!1s0x47aa29f485f939db:0x42120465b5e6e40!8m2!3d53.2973849!4d13.7247244 [Accessed 30 June 2017] and https://www.google.de/maps/place/Freising/@48.3899113,11.6464432,12z/data=!3m1!4b1!4m5!3m4!1s0x479e6adfada5bee9:0x81dace3d9e56222!8m2!3d48.4028796!4d11.7411846 [Accessed 30 June 2017]

  • Handcock RN, Swain DL, Bishop-Hurley GJ, Patison KP, Wark T, Valencia P, Corke P, ONeill CJ (2009) Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9:3586–3603

    Article  PubMed  Google Scholar 

  • Hansen B, Herfindal I, Aanes R, Saether BE, Henriksen S (2009) Functional response in habitat selection and the tradeoffs between foraging niche components in a large herbivore. Oikos 118:859–872

    Article  Google Scholar 

  • Harestad AS, Bunnel FL (1979) Home range and body weight—a reevaluation. Ecology 60:389–402

    Article  Google Scholar 

  • Hijmans RJ, Van Etten J (2014) raster: Geographic data analysis and modeling. R package version 2.2-31. In: http://CRAN.R-project.org/package = raster

  • InVeKoS (2014) Integriertes Verwaltungs- und Kontrollsystem—Landesvermessung und Geobasisinformation Brandenburg. In: https://www.geobasis-bb.de/dienstleister/gis_invekos.htm

  • Johnson DDP, Kays R, Blackwell PG, MacDonald DW (2002) Does the resource dispersion hypothesis explain group living? Trends Ecol Evol 17:563–570

    Article  Google Scholar 

  • Jonzén N, Knudsen E, Holt RD, Sæther B-E (2011) Uncertainty and predictability: the niches of migrants and nomads. In: Milner-Gulland E, Fryxell JM, Sinclair ARE (eds) Animal migration: A synthesis. Oxford University Press, pp 91–109

  • Kleijn D, Baquero RA, Clough Y, Diaz M, De Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Johl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254

    Article  PubMed  CAS  Google Scholar 

  • Leutner B, Horning N (2016) RStoolbox: tools for remote sensing data analysis. R Package version 0.1. 4. In: Available at https://CRAN.r-project.org/package=RStoolbox

  • Lewandoski K, Nowakowski JJ (1993) Spatial distribution of brown hare (Lepus europaeus) populations in various types of agriculture. Acta Theriol (Warsz) 38(4):435–442

    Article  Google Scholar 

  • MacDonald DW (1983) The ecology of carnivore social behaviour. Nature 301:379–384

    Article  Google Scholar 

  • MacNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140

    Article  Google Scholar 

  • Marable MK, Belant JL, Godwin D, Wang G (2012) Effects of resource dispersion and site familiarity on movements of translocated wild turkeys on fragmented landscapes. Behav Process 91:119–124

    Article  Google Scholar 

  • Marboutin E, Aebischer NJ (1996) Does harvesting arable crops influence the behaviour of the European hare (Lepus europaeus)? Wildl Biol 2(2):83–91

    Article  Google Scholar 

  • McClintic LF, Taylor JD, Jones JC, Singleton RD, Wang G (2014) Effects of spatiotemporal resource heterogeneity on home range size of American beaver. J Zool 293:134–141

    Article  Google Scholar 

  • Mcloughlin PD, Ferguson SH, Messier F (2000) Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. Evol Ecol 14:39–60

    Article  Google Scholar 

  • McLoughlin PD, Morris DW, Fortin D, Vander Wal E, Contasti AL (2010) Considering ecological dynamics in resource selection functions. J Anim Ecol 79:4–12

    Article  PubMed  Google Scholar 

  • Morales JM, Moorcroft PR, Matthiopoulos J, Frair JL, Kie JG, Powell RA, Merrill EH, Haydon DT (2010) Building the bridge between animal movement and population dynamics. Philos Trans R Soc London B Biol Sci 365:2289–2301

    Article  PubMed  Google Scholar 

  • Mortelliti A, Boitani L (2008) Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landscape Ecol 23:285–298

    Article  Google Scholar 

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments—from individual behaviours to population distributions. Oikos 117:654–664

    Article  Google Scholar 

  • Mueller T, Olson KA, Dressler G, Leimgruber P, Fuller TK, Nicolson C, Novaro AJ, Bolgeri MJ, Wattles D, DeStefano S, Calabrese JM, Fagan WF (2011) How landscape dynamics link individual- to population-level movement patterns: A multispecies comparison of ungulate relocation data. Glob Ecol Biogeogr 20:683–694

    Article  Google Scholar 

  • Naidoo R, Du Preez P, Stuart-Hill G, Weaver LC, Jago M, Wegmann M (2012) Factors affecting intraspecific variation in home range size of a large African herbivore. Landscape Ecol 27:1523–1534

    Article  Google Scholar 

  • Nilsen EB, Herfindal I, Linnell JDC (2009) Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity? Ecoscience 12:68–75

    Article  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K (2011) The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Clim Res 46:15–27

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117. In: Available at http://CRAN.R-project.org/package=nlme

  • R Core Team (2016) R: A language and environment for statistical computing. In: Vienna, Austria R Found. Stat. Comput. https://www.r-project.org/

  • Relyea RA, Lawrence RK, Demarais S (2000) Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J Wildl Manag 64:146–153

    Article  Google Scholar 

  • Requena-Mullor JM, López E, Castro AJ, Cabello J, Virgós E, González-Miras E, Castro H (2014) Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach. Landscape Ecol 29:843–855

    Article  Google Scholar 

  • Rouse Jr JW (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In: Nasa Tech. Reports Serv

  • Rühe F, Hohmann U (2004) Seasonal locomotion and home-range characteristics of European hares (Lepus europaeus) in an arable region in central Germany. Eur J Wildl Res 50(3):101–111

    Google Scholar 

  • Saïd S, Gaillard J, Widmer O, Débias F, Bourgoin G, Delorme D, Roux C (2009) What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 118:1299–1306

    Article  Google Scholar 

  • Saïd S, Servanty S (2005) The influence of landscape structure on female roe deer home-range size. Landscape Ecol 20:1003–1012

    Article  Google Scholar 

  • Schai-Braun SC, Hackländer K (2014) Home range use by the European hare (Lepus europaeus) in a structurally diverse agricultural landscape analysed at a fine temporal scale. Acta Theriol (Warsz) 59:277–287

    Article  Google Scholar 

  • Schai-Braun SC, Peneder S, Frey-Roos F, Hackländer K (2014) The influence of cereal harvest on the home-range use of the European hare (Lepus europaeus). Mammalia 78(4):497–506

    Google Scholar 

  • Schmidt NM, Asferg T, Forchhammer MC (2004) Long-term patterns in European brown hare population dynamics in Denmark: effects of agriculture, predation and climate. BMC Ecol 4(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith RK, Jennings NV, Robinson A, Harris S (2004) Conservation of European hares Lepus europaeus in Britain: is increasing habitat heterogeneity in farmland the answer? J Appl Ecol 41:1092–1102

    Article  Google Scholar 

  • Smith RK, Vaughan Jennings N, Harris S (2005) A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, intensity of agriculture and climate. Mamm Rev 35:1–24

    Article  Google Scholar 

  • Strauß E, Grauer A, Bartel M, Klein R, Wenzelides L, Greiser G, Muchin A, Nösel H, Winter A (2008) The German wildlife information system: population densities and development of European Hare (Lepus europaeus PALLAS) during 2002–2005 in Germany. Eur J Wildl Res 54:142–147

    Article  Google Scholar 

  • Swihart RK (1986) Home range-body mass allometry in rabbits and hares (Leporidae). Acta Theriol (Warsz) 31:139–148

    Article  Google Scholar 

  • Tapper SC, Barnes RFW (1986) Influence of farming practise on the ecology of the brown hare (Lepus europaeus). J Appl Ecol 23:39–52

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • van Moorter B, Bunnefeld N, Panzacchi M, Rolandsen C, Solberg E, Sæther BE (2013) Understanding scales of movement: animals ride waves and ripples of environmental change. J Anim Ecol 82:770–780

    Article  PubMed  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard J-M, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. In: Available at http://CRAN.R-project.org/package=MASS

  • Wegmann M, Leutner B, Dech S (2016) Remote sensing and GIS for ecologists: using open source software. Pelagic Publishing Ltd, Exeter

    Google Scholar 

  • Wikelski M, Kays R (2016) Movebank: archive, analysis and sharing of animal movement data. World Wide Web electronic publication. In: http://www.movebank.org (Accessed 1 Jun 2016)

  • Wood SN (2001) mgcv: GAMs and generalized ridge regression for R. R news 1(2):20–25

    Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This study was conducted in cooperation with and funds from the Leibniz Centre for Agricultural Landscape Research (ZALF), the long-term research platform “AgroScapeLab Quillow” (Leibniz Centre for Agricultural Landscape Research (ZALF) e.V.) and within the DFG funded research training group ‘BioMove’ (RTG 2118-1). Part of the telemetry material was also funded by the European Fund for Rural Development (EFRE) in the German federal state of Brandenburg. We thank the employees of the ZALF research station in Dedelow for their help and technical support. We also thank the Leibnitz Institute for Zoo and Wildlife Research Berlin—Niederfinow and Jochen Godt from the University of Kassel for providing the nets to catch hares. We also thank all students and hunters that helped with trapping and the land owners for allowing us to work on their land. All procedures for the research were obtained in accordance with the Federal Nature Conservation Act (§ 45 Abs. 7 Nr. 3) and approved by the local nature conservation authority (Reference Nos. LUGV V3-2347-22-2013 and 55.2-1-54-2532-229-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ullmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullmann, W., Fischer, C., Pirhofer-Walzl, K. et al. Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes. Landscape Ecol 33, 1505–1517 (2018). https://doi.org/10.1007/s10980-018-0676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0676-2

Keywords

Navigation