Skip to main content

Advertisement

Log in

Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate refugia—areas that remain suitable for species during periods of climate disruption—have played an important role in species persistence over time. Identifying and protecting these refugia is a key climate change adaptation approach for conservation planning.

Objectives

To identify climate refugia for Australian tropical/sub-tropical rainforest flora, from the Last Glacial Maximum to 2070.

Methods

Habitat suitability models were calibrated for 30 species using Maxent, and projected onto climate data for: Last Glacial Maximum (LGM, ~ 22,000 ybp); mid-Holocene (MH, ~ 6000 ybp); current period; and 2070. The intersection of suitable habitat over consecutive periods was assessed, identifying: current refugia (LGM–MH–Current); future refugia (Current–Future); and High Value Refugia (HVR, suitable over all four periods). Refugial hotspots (regions suitable for at least 15 species) were also identified.

Results

Suitable habitat was generally projected to span the greatest area in the current period. Four current refugial hotspots were identified: Wet Tropics, Central Mackay Coast, South Eastern Queensland, and North Coast (New South Wales). While suitable habitat for most species may decline in the future, HVRs will likely be retained for all species to at least 2070, although restricted in size. Future refugia was also projected in areas beyond species’ dispersal ranges.

Conclusions

HVRs are highly important for the conservation of these rainforest species, given their generation times, limited dispersal capabilities and additional anthropogenic barriers to movement. This study assists in understanding long-term spatial shifts in rainforest flora in response to climate change and in designing future conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott RJ, Smith LC, Milne RI, Crawford RMM, Wolff K, Balfour J (2000) Molecular analysis of plant migration and refugia in the Arctic. Science 289(5483):1343–1346

    CAS  PubMed  Google Scholar 

  • Adam P (1992) Australian rainforests. Clarendon Press, Oxford

    Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232

    Google Scholar 

  • Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecol Biogeogr 18(2):223–239

    Google Scholar 

  • Ashcroft MB (2010) Identifying refugia from climate change. J Biogeogr 37(8):1407–1413

    Google Scholar 

  • Assis J, Coelho NC, Lamy T, Valero M, Alberto F, Serrão EÁ (2016) Deep reefs are climatic refugia for genetic diversity of marine forests. J Biogeogr 43(4):833–844

    Google Scholar 

  • Baumgartner J, Wilson P, Esperon-Rodriguez M (2017) Rmaxent: tools for working with Maxent in R_. R package version 0.4.1.9000. https://github.com/johnbaums/rmaxent

  • Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quat Sci Rev 27(27):2449–2455

    Google Scholar 

  • Borchert R (1998) Responses of tropical trees to rainfall seasonality and its long-term changes. Potential impacts of climate change on tropical forest ecosystems. Springer, Dordrecht, pp 241–253

    Google Scholar 

  • Bowler JM, Hope GS, Jennings JN, Singh G, Walker D (1976) Late quaternary climates of Australia and New Guinea. Quat Res 6(3):359–394

    Google Scholar 

  • Brito PH (2005) The influence of pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe. Mol Ecol 14(10):3077–3094

    CAS  PubMed  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    CAS  PubMed  Google Scholar 

  • Costion CM, Edwards W, Ford AJ et al (2015) Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers Distrib 21(3):279–289

    Google Scholar 

  • Crayn DM, Costion C, Harrington MG, Richardson J (2015) The Sahul-Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J Biogeogr 42(1):11–24

    Google Scholar 

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17(2):1022–1035

    Google Scholar 

  • Dodson JR, Ono Y (1997) Timing of late quaternary vegetation response in the 30–50° latitude bands in southeastern Australia and northeastern Asia. Quat Int 37:89–104

    Google Scholar 

  • Dunstan C, Fox B (1996) The effects of fragmentation and disturbance of rainforest on ground-dwelling small mammals on the Robertson Plateau, New South Wales, Australia. J Biogeogr 23(2):187–201

    Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342

    Google Scholar 

  • Fahey M, Rossetto M, Wilson PD, Ho SYW (2019) Habitat preference differentiates the holocene range dynamics but not barrier effects on two sympatric, congeneric trees (Tristaniopsis, Myrtaceae). Heredity 123(4):532–548

    PubMed  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46(1):185–208

    CAS  PubMed  Google Scholar 

  • Gavin DG, Fitzpatrick MC, Gugger PF et al (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol 204(1):37–54

    PubMed  Google Scholar 

  • Graham V, Baumgartner J, Beaumont L, Esperon-Rodriguez M, Grech A (2019) Prioriteising the protection of climate refugia: designing a climate-ready protected area network. J Environ Plan Manag. https://doi.org/10.1080/09640568.2019.1573722

    Article  Google Scholar 

  • Hageer Y, Esperón-Rodríguez M, Baumgartner JB, Beaumont LJ (2017) Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species? PeerJ 5:e3446–e3446

    PubMed  PubMed Central  Google Scholar 

  • Hampe A, Rodríguez-Sánchez F, Dobrowski S, Hu FS, Gavin DG (2013) Climate refugia: from the Last Glacial Maximum to the twenty-first century. New Phytol 197(1):16–18

    PubMed  Google Scholar 

  • Haque MM, Nipperess DA, Gallagher RV, Beaumont LJ (2017) How well documented is Australia’s flora? understanding spatial bias in vouchered plant specimens. Aust Ecol 42(6):690–699

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405(6789):907–913

    CAS  PubMed  Google Scholar 

  • Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc London B 359(1442):183–195

    CAS  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo: Species Distribution Modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

  • Hopkins M, Head J, Ash J, Hewett R, Graham A (1996) Evidence of a Holocene and continuing recent expansion of lowland rain forest in humid, tropical North Queensland. J Biogeogr 23(6):737–745

    Google Scholar 

  • Hulme M (1994) Validation of large-scale precipitation fields in general circulation models. In: Desbois M, Désalmand F (eds) Global precipitations and climate change. Springer, Berlin p, pp 387–405

    Google Scholar 

  • IBRA (2012) Interim biogeographic regionalisation for Australia. Interim Biogeographic Regionalisation for Australia. Australian Government Department of Sustainability, Environment, Water, Populations and Communities. Australian Nature Conservation Agency, Canberra

    Google Scholar 

  • Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG (2017) Genetically informed ecological niche models improve climate change predictions. Glob Change Biol 23(1):164–176

    Google Scholar 

  • John R, Dalling JW, Harms KE et al (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104(3):864–869

    CAS  PubMed  Google Scholar 

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302(5651):1719–1723

    CAS  PubMed  Google Scholar 

  • Keith DA (2017) Australian vegetation. Cambridge University Press, Cambridge

    Google Scholar 

  • Keppel G, Wardell-Johnson GW (2012) Refugia: keys to climate change management. Glob Change Biol 18(8):2389–2391

    Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21(4):393–404

    Google Scholar 

  • Kershaw AP, Nix HA (1988) Quantitative palaeoclimatic estimates from Pollen Data using bioclimatic profiles of extant taxa. J Biogeogr 15(4):589–602

    Google Scholar 

  • Kershaw AP, Bretherton SC, van der Kaars S (2007) A complete pollen record of the last 230 ka from Lynch’s Crater, north-eastern Australia. Palaeogeogr Palaeoclimatol Palaeoecol 251(1):23–45

    Google Scholar 

  • Kooyman RM, Rossetto M, Cornwell W, Westoby M (2011) Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob Ecol Biogeogr 20(5):707–716

    Google Scholar 

  • Kooyman RM, Rossetto M, Sauquet H, Laffan SW (2013) Landscape patterns in rainforest phylogenetic signal: isolated islands of refugia or structured continental distributions? PLoS ONE 8(12):e80685

    PubMed  PubMed Central  Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789

    Google Scholar 

  • Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evolut 6(1):337–348

    Google Scholar 

  • McCallum KP, Guerin GR, Breed MF, Lowe AJ (2014) Combining population genetics, species distribution modelling and field assessments to understand a species vulnerability to climate change. Aust Ecol 39(1):17–28

    Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36(7):1333–1345

    Google Scholar 

  • Mellick R, Lowe A, Allen C, Hill RS, Rossetto M (2012) Palaeodistribution modelling and genetic evidence highlight differential post-glacial range shifts of a rain forest conifer distributed across a latitudinal gradient. J Biogeogr 39(12):2292–2302

    Google Scholar 

  • Metcalfe DJ, Green PT (2017) Rainforests and Vine Tickets. In: Keith DA (ed) Australian vegetation, 3rd edn. Cambridge University Press, Cambridge, pp 257–280

    Google Scholar 

  • Minden V, Jacobi JD, Porembski S, Boehmer HJ (2010) Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest. Appl Veg Sci 13(1):5–14

    Google Scholar 

  • Mokany K, Jordan GJ, Harwood TD et al (2017) Past, present and future refugia for Tasmania’s palaeoendemic flora. J Biogeogr 44(7):1537–1546

    Google Scholar 

  • Moritz C, Hoskin CJ, MacKenzie JB et al (2009) Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc R Soc B 276(1660):1235–1244

    CAS  PubMed  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214

    PubMed  Google Scholar 

  • Petherick L, McGowan H, Moss P (2008) Climate variability during the last glacial maximum in eastern Australia: evidence of two stadials? J Quat Sci 23(8):787–802

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259

    Google Scholar 

  • Provan J, Bennett K (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23(10):564–571

    PubMed  Google Scholar 

  • R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R: A Language and Environment for Statistical Computing

  • Reside AE, Welbergen JA, Phillips BL et al (2014) Characteristics of climate change refugia for Australian biodiversity. Aust Ecol 39(8):887–897

    Google Scholar 

  • Rossetto M, Kooyman RM (2005) The tension between dispersal and persistence regulates the current distribution of rare palaeo-endemic rain forest flora: a case study. J Ecol 93(5):906–917

    Google Scholar 

  • Rossetto M, Kooyman R, Sherwin W, Jones R (2008) Dispersal limitations, rather than bottlenecks or habitat specificity, can restrict the distribution of rare and endemic rainforest trees. Am J Bot 95(3):321–329

    PubMed  Google Scholar 

  • Rossetto M, Crayn D, Ford A, Mellick R, Sommerville K (2009) The influence of environment and life-history traits on the distribution of genes and individuals: a comparative study of 11 rainforest trees. Mol Ecol 18(7):1422–1438

    CAS  PubMed  Google Scholar 

  • Rossetto M, Kooyman R, Yap JY, Laffan SW (2015a) From ratites to rats: the size of fleshy fruits shapes species’ distributions and continental rainforest assembly. Proc Biol Sci 282(1820):20151998

    PubMed  PubMed Central  Google Scholar 

  • Rossetto M, McPherson H, Siow J, Kooyman R, Merwe M, Wilson PD (2015b) Where did all the trees come from? A novel multispecies approach reveals the impacts of biogeographical history and functional diversity on rain forest assembly. J Biogeogr 42(11):2172–2186

    Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evolut 6(16):5973–5986

    Google Scholar 

  • Sniderman JMK, Jordan GJ (2011) Extent and timing of floristic exchange between Australian and Asian rain forests. J Biogeogr 38(8):1445–1455

    Google Scholar 

  • Sollins P (1998) Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79(1):23–30

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    CAS  Google Scholar 

  • Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? glacial tree refugia in northern Europe. Trends Ecol Evol 28(12):696–704

    CAS  PubMed  Google Scholar 

  • VanDerWal J, Shoo LP, Williams SE (2009a) New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. J Biogeogr 36(2):291–301

    Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009b) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220(4):589–594

    Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8(7):767–781

    Google Scholar 

  • Vleminckx J, Drouet T, Amani C, Lisingo J, Lejoly J, Hardy OJ (2015) Impact of fine-scale edaphic heterogeneity on tree species assembly in a central African rainforest. J Veg Sci 26(1):134–144

    Google Scholar 

  • Walker J, Hopkins MS (1984) Vegetation. In: McDonald RC, Isbell RF, Speight JG, Walker J, Hopkins MS (eds) Australian Soil and Land Survey Handbook. Inkata Press, Melbourne

    Google Scholar 

  • Wallace J, McJannet D (2012) Climate change impacts on the water balance of coastal and montane rainforests in northern Queensland, Australia. J Hydrol 475:84–96

    Google Scholar 

  • Webb LJ, Tracey JG, Williams WT (1984) A floristic framework of Australian rainforests. Aust J Ecol 9(3):169–198

    Google Scholar 

  • Whetton P, Ekström M, Gerbing C et al (2015) CSIRO and Bureau of Meteorology 2015, Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report, CSIRO and Bureau of Meteorology, Australia. 222 pages. http://www.climatechangeinaustralia.gov.au/en/publications-library/technical-report

  • Williams SE, Pearson RG (1997) Historical rainforest contractions, localized extinctions and patterns of vertebrate endemism in the rainforests of Australia’s wet tropics. Proc R Soc London Series B 264(1382):709–716

    CAS  Google Scholar 

  • Willis KJ, Birks HJB (2006) What is natural? the need for a long-term perspective in biodiversity conservation. Science 314(5803):1261–1265

    CAS  PubMed  Google Scholar 

  • Willis KJ, MacDonald G (2011) Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu Rev Ecol Evol Syst 42:267–287

    Google Scholar 

  • Xu T, Hutchinson M (2011) ANUCLIM version 6.1 user guide. The Australian National University, Fenner School of Environment and Society, Canberra

  • Yap JYS, Rossetto M, Costion C et al (2018) Filters of floristic exchange: how traits and climate shape the rain forest invasion of Sahul from Sunda. J Biogeogr 45(4):838–847

    Google Scholar 

  • Zhang M-G, Slik JF, Ma K-P (2016) Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Sci Rep 6:22400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Yan F, Fu J et al (2013) River islands, refugia and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau. Mol Ecol 22(1):130–142

    PubMed  Google Scholar 

Download references

Acknowledgement

Thanks to Dr D Nipperess and Dr Md M Haque for their valuable comments on this research paper. We also thank Dr RM Kooyman for feedback on model output, and Dr K Williams for discussions on the use of soil variables. This research was funded by the Macquarie University International Research Training Program (Master of Research) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Baumgartner, J.B., Esperon-Rodriguez, M. et al. Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070. Landscape Ecol 34, 2883–2896 (2019). https://doi.org/10.1007/s10980-019-00924-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00924-6

Keywords

Navigation