Skip to main content
Log in

Microwave Synthesis of Prion Protein Fragments up to 111 Amino Acids in Length Generates Biologically Active Peptides

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Misfolded conformers of the prion protein are aetiologically implicated in neurodegenerative conditions termed prion diseases (also known as transmissible spongiform encephalopathies). Two constitutively expressed N-terminal peptides corresponding to human residues 23–90 and 23–111 are thought to serve normal physiological roles related to neuronal protection with membrane binding possibly playing a part in their mechanism of action. These peptides, along with several derivatives up to 111 residues in length, have been produced by microwave assisted peptide synthesis. HPLC and MS characterisation showed that the peptides were manufactured in good yields at high purity. Peptides were assayed by fluorescence spectroscopy for synthetic lipid-membrane binding activity and by dichlorodihydrofluorescein diacetate assay for the amelioration of reactive oxygen species production. Results of these assays were similar to those reported for the wild type recombinant PrP, demonstrating that these synthetic peptides are useful for biological and chemical assays of PrP activity. Further, the longest peptide 1–111 was dimerised via a single internal cystine residue with good yield. The high yields and low purification burden of the microwave assisted synthesis method lends itself to the production of difficult to produce peptides for such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ball HL, King DS, Cohen FE, Prusiner SB, Baldwin MA (2001) Engineering the prion protein using chemical synthesis. J Pept Res 58:357–374

    Article  PubMed  CAS  Google Scholar 

  • Boland MP, Hatty CR, Separovic F, Hill AF, Tew DJ, Barnham KJ, Haigh CL, James M, Masters CL, Collins SJ (2010) Anionic phospholipid interactions of the prion protein N terminus are minimally perturbing and not driven solely by the octapeptide repeat domain. J Biol Chem 285:32282–32292

    Article  PubMed  CAS  Google Scholar 

  • Bonetto V, Massignan T, Chiesa R, Morbin M, Mazzoleni G, Diomede L, Angeretti N, Colombo L, Forloni G, Tagliavini F, Salmona M (2002) Synthetic miniprion PrP106. J Biol Chem 277:31327–31334

    Article  PubMed  CAS  Google Scholar 

  • Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:310–318

    Article  PubMed  CAS  Google Scholar 

  • Brown DR, Besinger A (1998) Prion protein expression and superoxide dismutase activity. Biochem J 334:423–429

    PubMed  CAS  Google Scholar 

  • Chiesa R, Piccardo P, Ghetti B, Harris DA (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21:1339–1351

    Article  PubMed  CAS  Google Scholar 

  • Collins S, McLean CA, Masters CL (2001) Gerstmann–Straussler–Scheinker syndrome, fatal familial insomnia, and kuru: a review of these less common human transmissible spongiform encephalopathies. J Clin Neurosci 8:387–397

    Article  PubMed  CAS  Google Scholar 

  • Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP29–231: the N terminus is highly flexible. Proc Natl Acad Sci USA 94:13452–13457

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein-fragment. Nature 362:543–546

    Article  PubMed  CAS  Google Scholar 

  • Gambetti P, Parchi P, Chen SG (2003) Hereditary Creutzfeldt–Jakob disease and fatal familial insomnia. Clin Lab Med 23:43–64

    Article  PubMed  Google Scholar 

  • Giaccone G, Verga L, Bugiani O, Frangione B, Serban D, Pruisner SB, Farlow MR, Ghetti B, Tagliavini F (1992) Prion protein preamyloid and amyloid deposits in Gerstmann–Straussler–Scheinker disease, Indiana kindred. Proc Natl Acad Sci USA 89:9349–9353

    Article  PubMed  CAS  Google Scholar 

  • Haigh CL, Drew SC, Boland MP, Masters CL, Barnham KJ, Collins SJ (2009) Dominant roles of the polybasic proline motif and copper in the PrP23–89 mediated stress protection response. J Cell Sci 122:1518–1528

    Article  PubMed  CAS  Google Scholar 

  • James PF, Dogovski C, Dobson RCJ, Bailey MF, Goldie KN, Karas JA, Scanlon DB, O'Hair RAJ, Perugini MA (2009) Aromatic residues in the C-terminal helix of human apoC-I mediate phospholipid interactions and particle morphology. J Lipid Res 50:1384–1394

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GG, Puopolo M, Ladogana A, Pocchiari M, Budka, H, van Duijn C, Collins SJ, Boyd A, Giulivi A, Coulthart M, Delasnerie-Laupretre N, Brandel JP, Zerr I, Kretzschmar HA, de Pedro-Cuesta J, Calero-Lara M, Glatzel M, Aguzzi A, Bishop M, Knight R, Belay G, Will R, Mitrova E (2005) Genetic prion disease: the EUROCJD experience. Hum Genet 118:166–174

    Article  PubMed  CAS  Google Scholar 

  • Kurschner C, Morgan JI (1995) The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res Mol Brain Res 30:165–168

    Article  PubMed  CAS  Google Scholar 

  • Kurschner C, Morgan JI (1996) Analysis of interaction sites in homo- and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res Mol Brain Res 37:249–258

    Article  PubMed  CAS  Google Scholar 

  • López Garcia F, Zahn R, Riek R, Wüthrich K (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci USA 97:8334–8339

    Article  PubMed  Google Scholar 

  • Mead S, Poulter M, Beck J, Webb TEF, Campbell TA, Linehan JM, Desbruslais M, Joiner S, Wadsworth JDF, King A, Lantos P, Collinge J (2006) Inherited prion disease with six octapeptide repeat insertional mutation – molecular analysis of phenotypic heterogeneity. Brain 129:2297–2317

    Article  PubMed  Google Scholar 

  • Milhavet O, Lehmann S (2002) Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res Rev 38:328–339

    Article  PubMed  CAS  Google Scholar 

  • Mitteregger G, Vosko M, Krebs B, Xiang W, Kohlmannsperger V, Nolting S, Hamann GF, Kretzschmar HA (2007) The role of the octarepeat region in neuroprotective function of the cellular prion protein. Brain Path 17:174–183

    Article  CAS  Google Scholar 

  • Owen F, Lofthouse R, Crow TJ, Baker HF, Hsiao K, Poulter M, Collinge J, Risby D, Ridley RM, Prusiner SB (1989) Insertion in prion protein gene in familial creutzfeldt-jakob disease. Lancet 8628:51–52

    Article  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous particles cause scrapie. Science 216:136–144

    Article  PubMed  CAS  Google Scholar 

  • Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett 413:282–288

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini F, Prelli F, Ghiso J, Bugiani O, Serban D, Prusiner SB, Farlow MR, Ghetti B, Frangione B (1991) Amyloid protein of Gerstmann–Straussler–Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58. EMBO J 10:513–519

    PubMed  CAS  Google Scholar 

  • Tagliavini F, Prelli F, Verga L, Gaiccone G, Sarma R, Gorevic P, Ghetti B, Passerini F, Ghibaudi E, Forloni G, Salmona M, Bugiani O, Frangione B (1993) Synthetic peptides homologous to prion protein resiudes 106–147 form amyloid-like fibrils in vitro. Proc Natl Acad Sci USA 90:9678–9682

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini F, Forloni G, D’Ursi P, Bugiani O, Salmona M (2001) Studies on peptide fragments of prion proteins. Adv Protein Chem 57:171–201

    Article  PubMed  CAS  Google Scholar 

  • Stahl N, Borchelta DR, Hsiaoa K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240

    Article  PubMed  CAS  Google Scholar 

  • Stuermer CA, Langhorst MF, Wiechers MF, Legler DF, Von Hanwehr SH, Guse AH, Plattner H (2004) PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J 18:1731–1733

    PubMed  CAS  Google Scholar 

  • Watt NT, Taylor DR, Gillott A, Thomas DA, Perera WSS, Hooper NM (2005) Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem 280:35914–35921

    Article  PubMed  CAS  Google Scholar 

  • Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci USA 99:3563–3568

    Article  PubMed  CAS  Google Scholar 

  • Wopfner F, Weidenhöfer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schätzl HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289:1163–1178

    Article  PubMed  CAS  Google Scholar 

  • Zahn R, Liu A, Lührs T, Riek R, von Schroetter C, López García F, Billeter M, Calzolai L, Wider G, Wüthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97:145–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Sen Han for the use of the schematic PrP protein structure shown in Fig. 1. SC is supported by an NH&MRC Practitioner Fellowship #APP1005816 and Program Grant #628946.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven Collins or Denis Scanlon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karas, J.A., Boland, M., Haigh, C. et al. Microwave Synthesis of Prion Protein Fragments up to 111 Amino Acids in Length Generates Biologically Active Peptides. Int J Pept Res Ther 18, 21–29 (2012). https://doi.org/10.1007/s10989-011-9275-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9275-7

Keywords

Navigation