Skip to main content

Advertisement

Log in

Intranasal and Intramuscular Administration of Lysine-Palmitoylated Peptide 612–627 of Thyroid-Stimulating Hormone Receptor Increases the Level of Thyroid Hormones in Rats

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Nowadays, a search of new regulators of the hypothalamic-pituitary-thyroid (HPT) axis is a very actual problem, and one of the promising approaches to it is designing lipid-modified peptides corresponding to intracellular loops of thyroid-stimulating hormone receptor (TSHR). The aim of the present work was, first, to study the influence of single and 3-day treatment of rats with intranasally (i.n.) and intramuscularly (i.m.) administered lysine-palmitoylated peptide 612–627-K(Pal)A corresponding to the third intracellular loop of rat TSHR on the levels of thyroid hormones and TSH, and, second, the influence of peptide treatment on the sensitivity of HPT axis to thyroliberin. A single and 3-day treatment with i.n. peptide 612–627-K(Pal)A at a daily dose 450 μg/kg significantly increased fT4, tT4 and tT3 levels. i.m. peptide 612–627-K(Pal)A at a daily dose 900 μg/kg increased fT4 level, but influenced tT4 and tT3 levels not very significantly. Concerning 3-day treatment, the stimulating effect of the peptide on production of thyroid hormones was reduced on the last day due to decreased sensitivity of the thyroid to peptide. This was evidenced by weakening of stimulating influence of thyroliberin on production of thyroid hormones in rats treated for 2 days with 612–627-K(Pal)A. Unmodified peptide 612–627-KA, taken for comparison, had no influence on the thyroid hormonal status at the doses effective with the palmitoylated analog. Thus, peptide 612–627-K(Pal)A effectively stimulated production of thyroid hormones, so that there are all reasons to regard it as a prototype for creating the novel thyroid regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Adenylyl cyclase

fT4 :

Free thyroxine

GPCR:

G protein-coupled receptor

HPT axis:

Hypothalamic-pituitary-thyroid axis

ICL:

Intracellular loop

Pal:

Palmitoyl

PAR:

Protease-activated receptor

PLCβ:

Phospholipase Cβ

tT3 :

Total circulating triiodothyronine

tT4 :

Total circulating thyroxine

TM:

Transmembrane region

TRH:

Thyroid-stimulating hormone-releasing hormone

TSH:

Thyroid-stimulating hormone

TSHR:

Thyroid-stimulating hormone receptor

References

  • Agarwal A, Tressel SL, Kaimal R et al (2010) Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res 70:5880–5890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beck-Peccoz P, Persani L, Calebiro D et al (2006) Syndromes of hormone resistance in the hypothalamic-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 20:529–546

    Article  CAS  PubMed  Google Scholar 

  • Boelaert K, Franklyn JA (2005) Thyroid hormone in health and disease. J Endocrinol 187:1–15

    Article  CAS  PubMed  Google Scholar 

  • Chiamolera MI, Wondisford FE (2009) Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Cisowski J, O’Callaghan K, Kuliopulos A et al (2011) Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol 179:513–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claus M, Neumann S, Kleinau G et al (2006) Structural determinants for G-protein activation and specificity in the third intracellular loop of the thyroid-stimulating hormone receptor. J Mol Med (Berl) 84:943–954

    Article  CAS  Google Scholar 

  • Covic L, Gresser AL, Talavera J et al (2002a) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci USA 99:643–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Covic L, Misra M, Badar J et al (2002b) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Covic L, Tchernychev B, Jacques S, Kuliopulos A (2007) Pharmacology and in vivo efficacy of pepducins in hemostasis and arterial thrombosis: handbook of cell-penetrating peptides. Taylor & Francis, New York, pp 245–257

    Google Scholar 

  • Dremier S, Coulonval K, Perpete S et al (2002) The role of cyclic AMP and its effect on protein kinase A in the mitogenic action of thyrotropin on the thyroid cell. Ann N Y Acad Sci 968:106–121

    Article  CAS  PubMed  Google Scholar 

  • Duntas LH, Cooper DS (2008) Review on the use of a decade of recombinant human TSH: prospects and novel uses. Thyroid 18:509–516

    Article  CAS  PubMed  Google Scholar 

  • Faglia G (1998) The clinical impact of the thyrotropin-releasing hormone test. Thyroid 8:903–908

    Article  CAS  PubMed  Google Scholar 

  • Fast S, Nielsen VE, Bonnema SJ, Hegedus L (2009) Time to reconsider nonsurgical therapy of benign non-toxic multinodular goitre: focus on recombinant human TSH augmented radioiodine therapy. Eur J Endocrinol 160:517–528

    Article  CAS  PubMed  Google Scholar 

  • Fliers E, Alkemade A, Wiersinga WM, Swaab DF (2006) Hypothalamic thyroid hormone feedback in health and disease. Prog Brain Res 153:189–207

    Article  CAS  PubMed  Google Scholar 

  • Gershengorn MC, Neumann S (2012) Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab 97:4287–4292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giusti M, Caputo M, Calamia I et al (2009) Long-term outcome of low-activity radioiodine administration preceded by adjuvant recombinant human TSH pretreatment in elderly subjects with multinodular goiter. Thyroid Res 2:6. doi:10.1186/1756-6614-2-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Grasberger H, Van Sande J, Hag-Dahood MA et al (2007) A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis. J Clin Endocrinol Metab 92:2816–2820

    Article  CAS  PubMed  Google Scholar 

  • Grasso P, Leng N, Reichert LE (1995) A synthetic peptide corresponding to the third cytoplasmic loop (residues 533 to 555) of the testicular follicle-stimulating hormone receptor affects signal transduction in rat testis membranes and in intact cultured rat Sertoli cells. Mol Cell Endocrinol 110:35–41

    Article  CAS  PubMed  Google Scholar 

  • Jamieson T, Clarke M, Steele CW et al (2012) Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest 122:3127–3144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jäschke H, Neumann S, Moore S et al (2006) A low molecular weight agonist signals by binding to the transmembrane domain of thyroid-stimulating hormone receptor (TSHR) and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). J Biol Chem 281:9841–9844

    Article  PubMed  Google Scholar 

  • Kaneider NC, Agarwal A, Leger AJ, Kuliopulos A (2005) Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med 11:661–665

    Article  CAS  PubMed  Google Scholar 

  • Kero J, Ahmed K, Wettschureck N et al (2007) Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest 117:2399–2407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinau G, Jaeschke H, Worth CL et al (2010) Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One 5:e9745. doi:10.1371/journal.pone.0009745

    Article  PubMed Central  PubMed  Google Scholar 

  • Klieverik LP, Coomans CP, Endert E et al (2009) Thyroid hormone effects on whole-body energy homeostasis and tissue-specific fatty acid uptake in vivo. Endocrinology 150:5639–5648

    Article  CAS  PubMed  Google Scholar 

  • Kubo S, Ishiki T, Doe I et al (2006) Distinct activity of peptide mimetic intracellular ligands (pepducins) for proteinase-activated receptor-1 in multiple cells/tissues. Ann N Y Acad Sci 1091:445–459

    Article  CAS  PubMed  Google Scholar 

  • Lalli E, Sassone-Corsi P (1995) Thyroid-stimulating hormone (TSH)-directed induction of the CREM gene in the thyroid gland participates in the long-term desensitization of the TSH receptor. Proc Natl Acad Sci USA 92:9633–9637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Licht T, Tsirulnikov L, Reuveni H et al (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102:2099–2107

    Article  CAS  PubMed  Google Scholar 

  • Michael ES, Kuliopulos A, Covic L et al (2013) Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol 304:G516–G526

    CAS  Google Scholar 

  • Miller J, Agarwal A, Devi LA et al (2009) Insider access: pepducin symposium explores a new approach to GPCR modulation. Ann N Y Acad Sci 1180:1–12

    Article  Google Scholar 

  • Mukherjee S, Palczewski K, Gurevich VV, Hunzicker-Dunn M (1999) β-arrestin-dependent desensitization of luteinizing hormone/choriogonadotropin receptor is prevented by a synthetic peptide corresponding to the third intracellular loop of the receptor. J Biol Chem 274:12984–12989

    Article  CAS  PubMed  Google Scholar 

  • Narumi S, Nagasaki K, Ishii T et al (2011) Nonclassic TSH resistance: TSHR mutation carriers with discrepantly high thyroidal iodine uptake. J Clin Endocrinol Metab 96:E1340–E1345

    Article  CAS  PubMed  Google Scholar 

  • Neumann S, Huang W, Titus S et al (2009) Small molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci USA 106:12471–12476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann S, Nir EA, Eliseeva E et al (2014) A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155:310–314

    Article  PubMed Central  PubMed  Google Scholar 

  • Nielsen TB, Totsuka Y, Field JB (1982) Three types of desensitization of metabolic responses to thyrotropin in thyroid tissue: a review. Endocrinol Exp 16:247–257

    CAS  PubMed  Google Scholar 

  • O’Callaghan K, Kuliopulos A, Covic L (2012) Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. J Biol Chem 287:12787–12796

    Article  PubMed Central  PubMed  Google Scholar 

  • Pellegriti G, Scollo C, Regalbuto C et al (2003) The diagnostic use of the rhTSH/thyroglobulin test in differentiated thyroid cancer patients with persistent disease and low thyroglobulin levels. Clin Endocrinol (Oxf) 58:556–561

    Article  CAS  Google Scholar 

  • Persani L, Calebiro D, Cordella D et al (2010) Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol 322:72–82

    Article  CAS  PubMed  Google Scholar 

  • Plati J, Tsomaia N, Piserchio A, Mierke DF (2007) Structural features of parathyroid hormone receptor coupled to Gαs-protein. Biophys J 92:535–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quoyer J, Janz JM, Luo J et al (2013) Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc Natl Acad Sci USA. 110:E5088–E5097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Refetoff S (2003) The syndrome of resistance to thyroid stimulating hormone. J Chin Med Assoc 66:441–452

    PubMed  Google Scholar 

  • Roger PP, van Staveren WC, Coulonval K et al (2010) Signal transduction in the human thyrocyte and its perversion in thyroid tumors. Mol Cell Endocrinol 321:3–19

    Article  CAS  PubMed  Google Scholar 

  • Severino B, Incisivo GM, Fiorino F et al (2013) Identification of a pepducin acting as S1P3 receptor antagonist. J Pept Sci 19:717–724

    Article  CAS  PubMed  Google Scholar 

  • Shpakov AO, Pertseva MN (2007) The peptide strategy as a novel approach to the study of G protein-coupled signaling systems. In: Grachevsky NO (ed) Signal transduction research trends. Nova Science Publishers Inc, New York, pp 45–93

    Google Scholar 

  • Shpakov AO, Gur’yanov IA, Kuznetsova LA et al (2007) Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor. Neurosci Behav Physiol 37:705–714

    Article  CAS  PubMed  Google Scholar 

  • Shpakov AO, Shpakova EA, Tarasenko II et al (2010) The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system. Int J Pept Res Ther 16:95–105

    Article  CAS  Google Scholar 

  • Shpakov AO, Shpakova EA, Tarasenko II et al (2011) The influence of peptides corresponding to the third intracellular loop of luteinizing hormone receptor on basal and hormone-stimulated activity of the adenylyl cyclase signaling system. Glob J Biochem 2:59–73

    CAS  Google Scholar 

  • Shpakov AO, Shpakova EA, Derkach KV (2012) The sensitivity of the adenylyl cyclase system in rat thyroidal and extrathyroidal tissues to peptides corresponding to the third intracellular loop of thyroid-stimulating hormone receptor. Curr Top Pept Protein Res 13:61–73

    CAS  Google Scholar 

  • Shpakova EA, Derkach KV, Shpakov AO (2013) Biological activity of lipophilic derivatives of peptide 562–572 of rat luteinizing hormone receptor. Dokl Biochem Biophys 452:248–250

    Article  CAS  PubMed  Google Scholar 

  • Tezelman S, Siperstein AE, Duh QY et al (1996) Desensitization of cyclic adenosine 3,5′-monophosphate response to thyrotropin in normal and primary or metastatic papillary thyroid cancer cells in vitro. Surgery 120:926–933

    Article  CAS  PubMed  Google Scholar 

  • Tezelman S, Hoelting T, Jossart GH et al (1998) Heterologous desensitization in neoplastic thyroid cells: influence of the phospholipase C signal transduction system on the thyrotropin-adenylate cyclase signal transduction system. World J Surg 22:544–551

    Article  CAS  PubMed  Google Scholar 

  • Thorne R, Pronk G, Padmanabhan V, Frey W (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127:481–496

    Article  CAS  PubMed  Google Scholar 

  • Tressel SL, Koukos G, Tchernychev B et al (2011) A pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol 683:259–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uyttersprot N, Allgeier A, Baptist M et al (1997) The cAMP in thyroid: from the TSH receptor to mitogenesis and tumorigenesis. Adv Second Messenger Phosphoprotein Res 31:125–140

    Article  CAS  PubMed  Google Scholar 

  • Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596–611

    CAS  PubMed  Google Scholar 

  • Villone G, Veneziani BM, Picone R et al (1993) In the thyroid cells proliferation, differentiated and metabolic functions are under the control of different steps of the cyclic AMP cascade. Mol Cell Endocrinol 95:85–93

    Article  CAS  PubMed  Google Scholar 

  • Williams ED (1990) TSH and thyroid cancer. Horm Metab Res Suppl 23:72–75

    CAS  PubMed  Google Scholar 

  • Wong R, Topliss DJ, Bach LA et al (2009) Recombinant human thyroid-stimulating hormone (Thyrogen) in thyroid cancer follow up: experience at a single institution. Intern Med J 39:156–163

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Boire A, Agarwal A et al (2009) Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 69:6223–6231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Gruber A, Kasuda S et al (2012) Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin. Circulation 126:83–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by project No. 14-15-00413 from the Russian Science Foundation. The authors are grateful to Inga Menina for linguistic assistance.

Conflict of interest

Derkach K, Shpakova E, Titov A and Shpakov A declare that they have no conflict of interest.

Statement of Informed Consent

Informed consent was obtained from all individual participants included in the study.

Statement on the Welfare of Animals

The experiments were carried out under the Bioethics Committee of Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia (Institutional Guidelines, December 23, 2010) and under the guidelines of the National Institutes of Health Regulations for the Care and Use of Animals for Scientific Purposes according to the criteria outlined in the “Guide for the Care and Use of Laboratory Animals”. All efforts were made to minimize animal suffering and to reduce the number of animals used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander O. Shpakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkach, K.V., Shpakova, E.A., Titov, A.K. et al. Intranasal and Intramuscular Administration of Lysine-Palmitoylated Peptide 612–627 of Thyroid-Stimulating Hormone Receptor Increases the Level of Thyroid Hormones in Rats. Int J Pept Res Ther 21, 249–260 (2015). https://doi.org/10.1007/s10989-014-9452-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9452-6

Keywords

Navigation