Skip to main content
Log in

The Relationship Between Apparent Temperature and Daily Number of Live Births in Montreal

  • Brief Reports
  • Published:
Maternal and Child Health Journal Aims and scope Submit manuscript

Abstract

Objectives

Temperature is a hypothesized determinant of early delivery, but seasonal and long term trends, delayed effects of temperature, and the influence of extreme cold temperatures have not yet been addressed. We aim to study the influence of apparent temperature on daily number of births, considering lag structures, seasonality and long term trends.

Methods

We used daily number of births in conjunction with apparent outdoor temperatures between 1981 and 2010 in Montreal. We used Poisson regression combined with a distributed lag nonlinear model to consider non-linear relationships between temperature and daily number of births across specific lag periods.

Results

We found that apparent temperature was associated with the daily number of births in Montreal, with a 1-day delay. We found an increase in births on hot days, and decrease on cold days, both offset by a harvesting effect after 4 and 5 days.

Conclusions for Practice

This study suggests that the number of births is affected by extreme temperatures. Obstetric and perinatal service providers should be prepared for spikes in the number of births caused by extreme temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Strand, L. B., Barnett, A. G., & Tong, S. (2011). The influence of season and ambient temperature on birth outcomes: A review of the epidemiological literature. Environmental Research, 111(3), 451–462.

    Article  CAS  PubMed  Google Scholar 

  2. Basu, R., Malig, B., & Ostro, B. (2010). High ambient temperature and the risk of preterm delivery. American Journal of Epidemiology, 172(10), 1108–1117.

    Article  PubMed  Google Scholar 

  3. Dadvand, P., Basagana, X., Sartini, C., et al. (2011). Climate extremes and the length of gestation. Environmental Health Perspectives, 119(10), 1449–1453. doi:10.1289/ehp.1003241.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lajinian, S., Hudson, S., Applewhite, L., et al. (1997). An association between the heat-humidity index and preterm labor and delivery: A preliminary analysis. American Journal of Public Health, 87(7), 1205–1207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yackerson, N., Piura, B., & Sheiner, E. (2008). The influence of meteorological factors on the emergence of preterm delivery and preterm premature rupture of membrane. Journal of Perinatology, 28(10), 707–711.

    Article  CAS  PubMed  Google Scholar 

  6. Vicedo-Cabrera, A. M., Iñíguez, C., Barona, C., et al. (2014). Exposure to elevated temperatures and risk of preterm birth in Valencia, Spain. Environmental Research, 134, 210–217.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, S. J., Hajat, S., Steer, P. J., et al. (2008). A time-series analysis of any short-term effects of meteorological and air pollution factors on preterm births in London, UK. Environmental Research, 106(2), 185–194.

    Article  CAS  PubMed  Google Scholar 

  8. Porter, K. R., Thomas, S. D., & Whitman, S. (1999). The relation of gestation length to short-term heat stress. American Journal of Public Health, 89(7), 1090–1092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bhaskaran, K., Gasparrini, A., Hajat, S., et al. (2013). Time series regression studies in environmental epidemiology. International Journal of Epidemiology, 42, 1187–1195.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kalkstein, L. S., & Valimont, K. M. (1986). An evaluation of summer discomfort in the United State using a relative climatological index. Bulletin of the American Meteorological Society, 67(7), 842–848.

    Article  Google Scholar 

  11. Gasparrini, A. (2011). Distributed lag linear and non-linear models in R: The package dlnm. Journal of Statistical Software, 43(8), 1.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gasparrini, A., Armstrong, B., & Kenward, M. (2010). Distributed lag non-linear models. Statistics in Medicine, 29(21), 2224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Goodman, M. J., Nelson, W. W., & Maciosek, M. V. (2005). Births by day of week: A historical perspective. Journal of Midwifery & Women’s Health, 50(1), 39–43.

    Article  Google Scholar 

  14. Cesario, S. K. (2002). The “Christmas Effect” and other biometeorologic influences on childbearing and the health of women. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 31(5), 526–535.

    Article  Google Scholar 

  15. Schwartz, J. (2000). Harvesting and long term exposure effects in the relation between air pollution and mortality. American Journal of Epidemiology, 151(5), 440–448.

    Article  CAS  PubMed  Google Scholar 

  16. Flouris, A. D., Spiropoulos, Y., Sakellariou, G. J., et al. (2009). Short report effect of seasonal programming on fetal development and longevity: Links with environmental temperature. American Journal of Human Biology, 21, 214–216.

    Article  PubMed  Google Scholar 

  17. Auger, N., Naimi, A. I., Smargiassi, A., et al. (2014). Extreme heat and risk of early delivery among preterm and term pregnancies. Epidemiology, 25(3), 344–350.

    Article  PubMed  Google Scholar 

  18. Carolan-Olah, M., & Frankowska, D. (2014). High environmental temperature and preterm birth: A review of the evidence. Midwifery, 30(1), 50–59.

    Article  PubMed  Google Scholar 

  19. Darrow, L. A., Klein, M., Flanders, W. D., et al. (2009). Ambient air pollution and preterm birth: A time-series analysis. Epidemiology (Cambridge, MA), 20(5), 689.

    Article  Google Scholar 

  20. Hansen, C., Neller, A., Williams, G., et al. (2006). Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. BJOG: An International Journal of Obstetrics & Gynaecology, 113(8), 935–941.

    Article  CAS  Google Scholar 

  21. Escribà-Agüir, V., Perez-Hoyos, S., & Saurel-Cubizolles, M.-J. (2001). Physical load and psychological demand at work during pregnancy and preterm birth. International Archives of Occupational and Environmental Health, 74(8), 583–588.

    Article  PubMed  Google Scholar 

  22. Wang, J., Williams, G., Guo, Y., et al. (2013). Maternal exposure to heatwave and preterm birth in Brisbane, Australia. BJOG: An International Journal of Obstetrics & Gynaecology, 120(13), 1631–1641.

    Article  CAS  Google Scholar 

  23. Okun, M. L., Roberts, J. M., Marsland, A. L., et al. (2009). How disturbed sleep may be a risk factor for adverse pregnancy outcomes a hypothesis. Obstetrical & Gynecological Survey, 64(4), 273.

    Article  Google Scholar 

  24. Goldenberg, R. L., Culhane, J. F., Iams, J. D., et al. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75–84.

    Article  Google Scholar 

  25. Kammerer, M., Adams, D., Von Castelberg, B., et al. (2002). Pregnant women become insensitive to cold stress. BMC Pregnancy and Childbirth, 2(1), 8.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Evenson, K. R., Savitz, A., & Huston, S. L. (2004). Leisure-time physical activity among pregnant women in the US. Paediatric and Perinatal Epidemiology, 18(6), 400–407.

    Article  PubMed  Google Scholar 

  27. Alexander, G. R., & Kotelchuck, M. (2001). Assessing the role and effectiveness of prenatal care: History, challenges, and directions for future research. Public Health Reports, 116(4), 306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Deschênes, O., Greenstone, M., & Guryan, J. (2009). Climate change and birth weight. The American Economic Review, 99, 211–217.

    Article  Google Scholar 

  29. McPheeters, M. L., Miller, W. C., Hartmann, K. E., et al. (2005). The epidemiology of threatened preterm labor: A prospective cohort study. American Journal of Obstetrics and Gynecology, 192(4), 1325–1329.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Benmarhnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmarhnia, T., Auger, N., Stanislas, V. et al. The Relationship Between Apparent Temperature and Daily Number of Live Births in Montreal. Matern Child Health J 19, 2548–2551 (2015). https://doi.org/10.1007/s10995-015-1794-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10995-015-1794-y

Keywords

Navigation