Skip to main content

Advertisement

Log in

Research on vertical cable seismic interferometry imaging

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Vertical cable seismic (VCS) is a reflection seismic exploration technique, which is mainly used for structural imaging in high dip angle areas. Because the source and receiver points are usually not in the same plane, it is not possible to use conventional velocity analysis to obtain the velocity field. In most cases, the velocity field of the streamer data is processed in the same survey area as the VCS. Seismic interferometry is to obtain new seismic signals by cross-correlation or convolution operation of seismic signals received by different receivers. Therefore, we propose to apply seismic interferometry to VCS exploration. Compared with conventional VCS data processing, this method does not need towed streamer data and improves exploration efficiency. In this paper, the method is applied to model data and actual data of South China Sea respectively to obtain the stacking profile. The results show that this method is applied to VCS data, and the stacking profile is continuous in phase axis and clear in structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson J, Sukup D, Boyd S, Noponen I, Cai W, Delome H (1997) 3-D vertical cable processing to obtain a pre-stack depth-migrated image. Seg Tech Program Expand Abstr 16(1):200–206

    Google Scholar 

  • Asakawa E, Murakami F, Tsukahara H, Mizohata S (2014) Vertical cable seismic (VCS) survey for seafloor massive sulphide (SMS) exploration. In: 76th EAGE conference and exhibition

  • Bakulin A, Calvert R (2004) Virtual source: new method for imaging and 4D below complex overburden. In: Seg technical program expanded abstracts, 2477

  • Bakulin A, Calvert R (2006) The virtual source method: theory and case study. Geophysics 71(4):SI139–SI150

    Article  Google Scholar 

  • Carrière O, Gerstoft P (2013) Deep-water subsurface imaging using OBS interferometry. Geophysics 78(2):Q15–Q24

    Article  Google Scholar 

  • Claerbout JF (1968) Synthesis of a layered medium from its acoustic transmission response. Geophysics 33(2):264

    Article  Google Scholar 

  • Draganov D, Campman X, Thorbecke J, Verdel A, Wapenaar K (2009) Reflection images from ambient seismic noise. Geophysics 74(5):A63-67

    Article  Google Scholar 

  • Draganov D, Campman X, Thorbecke J, Verdel A, Wapenaar K (2013) Seismic exploration-scale velocities and structure from ambient seismic noise (> 1 Hz). J Geophys Re 118(8):4345–4360

    Article  Google Scholar 

  • Gaiser J, Vasconcelos I, Calderón-Macias C (2008) Elastic interferometry for OBC data: theory and examples. In: SEG technical program expanded abstracts 2008 (pp 1073–1077). Society of Exploration Geophysicists

  • Gerstoft P, Sabra KG, Roux P, Kuperman WA, Fehler MC (2006) Green’s functions extraction and surface-wave tomography from microseisms in southern California. Geophysics 71(4):SI23

    Article  Google Scholar 

  • Haines SS (2011) PP and PS interferometric images of near-seafloor sediments. In: SEG technical program expanded abstracts 2011 (pp 1288–1292). Society of Exploration Geophysicists

  • Hondori EJ, Katou M, Tara K, Asakawa E, Mikada H (2019) Mirror reverse time migration using vertical cable seismic data for methane hydrate exploration. Geophysics 84(6):1–58

    Article  Google Scholar 

  • Jamali HE, Katou M, Tara K, Asakawa E, Mikada H (2019) Mirror reverse time migration using vertical cable seismic data for methane hydrate exploration. Geophysics 84(6):B447–B460

    Article  Google Scholar 

  • Krail PM (1994) Vertical cable as a subsalt imaging tool. Lead Edge 13(8):885

    Article  Google Scholar 

  • Mehta K, Bakulin A, Sheiman J, Calvert R, Snieder R (2007) Improving the virtual source method by wavefield separation. Geophysics 72(4):V79–V86

    Article  Google Scholar 

  • Minato S, Matsuoka T, Tsuji T, Draganov D, Hunziker J, Wapenaar K (2011) Seismic interferometry using multidimensional deconvolution and crosscorrelation for crosswell seismic reflection data without borehole sources. Geophysics 76(1):SA19–SA34

    Article  Google Scholar 

  • Rickett J, Claerbout J (2000) Acoustic daylight imaging via spectral factorization: helioseismology and reservoir monitoring. Lead Edge 18(8):957–960

    Article  Google Scholar 

  • Schuster GT (2001) Theory of daylight/interferometric imaging: tutorial, Extended abstracts. In: Annual international meeting eage extended abstracts session A.

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31(7)

  • Shapiro et al (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715):1615–1618

    Article  Google Scholar 

  • Shiraishi K, Fujie G, Sato T, Abe S, Asakawa E, Kodaira S (2017) Interferometric OBS imaging for wide-angle seismic data. Geophysics 82(5):Q39–Q51

    Article  Google Scholar 

  • Snieder R, Grêt A, Douma H, Scales J (2002) Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science. 295:253

    Article  Google Scholar 

  • Vasconcelos I, Snieder R, Hornby B (2008) Imaging internal multiples from subsalt VSP data-examples of target-oriented interferometry. Geophysics 73:S157–S168

    Article  Google Scholar 

  • Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71(4):SI33–SI46

    Article  Google Scholar 

  • Wapenaar K, Draganov D, Thorbecke J, Fokkema J (2002) Theory of acoustic daylight imaging revisited. Seg Expanded Abstracts, 2269

  • Wapenaar K, Draganov D, Snieder R, Campman X, Verdel A (2010a) Tutorial on seismic interferometry: part 1—basic principles and applications. Geophysics 75(5):75A195

    Article  Google Scholar 

  • Wapenaar K, Slob E, Snieder R (2010b) On seismic interferometry, the generalized optical theorem, and the scattering matrix of a point scatterer. Geophysics 75(3):SA27

    Article  Google Scholar 

  • Yu J, Schuster GT (2006) Crosscorrelogram migration of inverse vertical seismic profile data. Geophysics 71(1):S1–S11

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (2018YFC0310002), the National Natural Science Foundation of China (Grant Number 41874131) and the Key Research and Development Project of Guangdong Province (Grant: 2020B1111510001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, W., Wang, X. et al. Research on vertical cable seismic interferometry imaging. Mar Geophys Res 43, 12 (2022). https://doi.org/10.1007/s11001-022-09476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-022-09476-y

Keywords

Navigation