Skip to main content
Log in

Algorithms for minimal Picard–Fuchs operators of Feynman integrals

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In even space-time dimensions, the multi-loop Feynman integrals are integrals of rational function in projective space. By using an algorithm that extends the Griffiths–Dwork reduction for the case of projective hypersurfaces with singularities, we derive Fuchsian linear differential equations and the Picard–Fuchs equations, with respect to kinematic parameters for a large class of massive multi-loop Feynman integrals. With this approach, we obtain the differential operator for Feynman integrals to high multiplicities and high loop orders. Using recent factorisation algorithms, we give the minimal-order differential operator in most of the cases studied in this paper. Amongst our results are that the order of Picard–Fuchs operator for the generic massive two-point \(n-1\)-loop sunset integral in two dimensions is \(2^{n}-\left( {\begin{array}{c}n+1\\ \left\lfloor \frac{n+1}{2}\right\rfloor \end{array}}\right) \) supporting the conjecture that the sunset Feynman integrals are relative periods of Calabi–Yau of dimensions \(n-2\). We have checked this explicitly till six loops. As well, we obtain a particular Picard–Fuchs operator of order 11 for the massive five-point tardigrade non-planar two-loop integral in four dimensions for generic mass and kinematic configurations, suggesting that it arises from K3 surface with Picard number 11. We determine as well Picard–Fuchs operators of two-loop graphs with various multiplicities in four dimensions, finding Fuchsian differential operators with either Liouvillian or elliptic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A Magma implementation is available at https://github.com/lairez/periods.

  2. The superscript denotes the number of independent mass parameters. When the mass parameters are identified with s different values, we use the notation \([r_1^{a_1} r_2^{a_2}\cdots r_s^{a_s}]\) such that \(\sum _{i=1}^r a_i r_i=n\). When all the mass parameters are different \(m_1\ne \cdots \ne m_n\) we use \([1^n]\).

  3. For all the Picard–Fuchs operator considered in this work, the degree refers to the degree in t of the polynomial multiplying the higher-order derivative term. By homogeneity, the degree of the polynomial coefficient decreases with the derivative order.

  4. These values correspond to the position of the singular fibres of the pencil of K3 surfaces associated with the three-loop sunset (see the discussion in [64] and [59]).

  5. They correspond to the positions of singular fibres of the pencil of Calabi–Yau threefold (see the discussion in [59] and [64] ).

  6. This is sometimes called the Dunce’s cap graph, e.g. [68]. But since we are generalising to the multi-loop case, we will call these graphs ice-cream cone with multi-scoops.

  7. We thank Charles Doran for this reference.

  8. This is a Frobenius basis of solutions that can be obtained from the indicial equation near \(t=0\) [71]. The indicial equation near the point \(t=\alpha \) is the equation on the exponents of a solution to the differential equation behaving as \((t-\alpha )^\rho \). In the following, we will consider \(\alpha =0\) or \(\alpha =\infty \).

  9. The solutions of a product operator AB are solutions of the inhomogeneous equation \(B(y) = u\), where u is a solution of \(A(u) = 0\). Using variation of parameters, the solutions of this inhomogeneous equations can be expressed in terms of the solutions of B and that of A, using only the operations defining Liouvillian functions.

References

  1. Golubeva, V.A.: Some problems in the analytic theory of Feynman integrals. Russ. Math. Surv. 31, 139 (1976)

    MATH  Google Scholar 

  2. Pham, F.: Introduction à l’étude topologique des singularités de Landau. Gauthier-Villars, Paris (1967)

    MATH  Google Scholar 

  3. Panzer, E.: Feynman Integrals and Hyperlogarithms. PhD Humboldt U, Thesis (2015). arXiv:1506.07243 [math-ph]

  4. Duhr, C.: Function theory for multiloop Feynman integrals. Ann. Rev. Nucl. Part. Sci. 69, 15–39 (2019)

    ADS  Google Scholar 

  5. Mizera, S.: Status of intersection theory and feynman integrals. PoS MA2019, 016 (2019). arXiv:2002.10476 [hep-th]

  6. Broadhurst, D.J., Kreimer, D.: Knots and numbers in Ph\( i^4\) theory to 7 loops and beyond. Int. J. Mod. Phys. C 6, 519 (1995)

    ADS  MATH  Google Scholar 

  7. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams Up to 9 loops. Phys. Lett. B 393, 403 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Kontsevich, M., Zagier, D.: Periods, in Engquist, Björn; Schmid, Wilfried, Mathematics unlimited: and beyond, Berlin, pp. 771–808. Springer-Verlag, New York (2001)

  9. Bloch, S., Esnault, H., Kreimer, D.: On Motives associated to graph polynomials. Commun. Math. Phys. 267, 181–225 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Brown, F.C.S.: Feynman Amplitudes and Cosmic Galois group. arXiv:1512.06409

  11. Brown, F.C.S.: On the Periods of Some Feynman Integrals. arXiv:0910.0114 [math.AG]

  12. Bloch, S., Kerr, M., Vanhove, P.: A Feynman integral via higher normal functions. Compos. Math. 151(12), 2329–2375 (2015). https://doi.org/10.1112/S0010437X15007472

    Article  MathSciNet  MATH  Google Scholar 

  13. Bloch, S., Kerr, M., Vanhove, P.: Local mirror symmetry and the sunset Feynman integral. Adv. Theor. Math. Phys. 21, 1373–1453 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Bourjaily, J.L., He, Y.H., Mcleod, A.J., Von Hippel, M., Wilhelm, M.: Traintracks through Calabi–Yau manifolds: scattering amplitudes beyond elliptic polylogarithms. Phys. Rev. Lett. 121(7), 071603 (2018)

    ADS  MathSciNet  Google Scholar 

  15. Bourjaily, J.L., McLeod, A.J., Vergu, C., Volk, M., Von Hippel, M., Wilhelm, M.: Embedding Feynman integral (Calabi–Yau) geometries in weighted projective space. JHEP 01, 078 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Bourjaily, J.L., McLeod, A.J., von Hippel, M., Wilhelm, M.: Bounded collection of Feynman integral Calabi–Yau geometries. Phys. Rev. Lett. 122, 031601 (2019)

    ADS  Google Scholar 

  17. Klemm, A., Nega, C., Safari, R.: The \(l\)-loop banana amplitude from Gkz systems and relative Calabi–Yau periods. JHEP 04, 088 (2020)

    ADS  MathSciNet  Google Scholar 

  18. Bönisch, K., Fischbach, F., Klemm, A., Nega, C., Safari, R.: Analytic structure of all loop banana integrals. JHEP 05, 066 (2021). https://doi.org/10.1007/JHEP05(2021)066

    Article  ADS  MATH  Google Scholar 

  19. Bönisch, K., Duhr, C., Fischbach, F., Klemm, A., Nega, C.: Feynman Integrals in Dimensional Regularization and Extensions of Calabi–Yau Motives. arXiv:2108.05310 [hep-th]

  20. Bourjaily, J.L., Broedel, J., Chaubey, E., Duhr, C., Frellesvig, H., Hidding, M., Marzucca, R., McLeod, A.J., Spradlin, M., Tancredi, L., et al.: Functions Beyond Multiple Polylogarithms for Precision Collider Physics. arXiv:2203.07088 [hep-ph]

  21. Forum, A., von Hippel, M.: A Symbol and Coaction for Higher-Loop Sunrise Integrals. arXiv:2209.03922 [hep-th]

  22. Duhr, C., Klemm, A., Loebbert, F., Nega, C., Porkert, F.: Yangian-invariant fishnet integrals in 2 dimensions as volumes of Calabi–Yau varieties. arXiv:2209.05291 [hep-th]

  23. Vanhove, P.: The physics and the mixed Hodge structure of Feynman integrals. Proc. Symp. Pure Math. 88, 161–194 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Chyzak, F., Goyer, A., Mezzarobba, M.: Symbolic-Numeric Factorization of Differential Operators. arXiv:2205.08991

  25. Vanhove, P.: Differential equations for Feynman integrals. In: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, pp. 21–26. https://doi.org/10.1145/3452143.3465512

  26. Vanhove, P.: Feynman Integrals, Toric Geometry and Mirror Symmetry. arXiv:1807.11466 [hep-th]

  27. Lairez, P.: Computing periods of rational integrals. Math. Comp. 85, 1719–1752 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Bitoun, T., Bogner, C., Klausen, R.P., Panzer, E.: Feynman integral relations from parametric annihilators. Lett. Math. Phys. 109(3), 497–564 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Noboru Nakanishi:Graph Theory and Feynman Integrals. Gordon & Breach Science Publishers Ltd (1971)

  30. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  31. Bogner, C., Weinzierl, S.: Feynman graph polynomials. Int. J. Mod. Phys. A 25, 2585–2618 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Weinzierl, S.: Feynman Integrals. arXiv:2201.03593 [hep-th]

  33. Asribekov, V.E.: Choice of invariant variables for the ‘’Many-Point’’ functions. J. Exp. Theor. Phys. 15(2), 394 (1962)

    MathSciNet  MATH  Google Scholar 

  34. Eden, R.J., Landshoff, P.V., Olive, D.I., Polkinghorne, J.C.: The Analytic S-matrix. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  35. Hannesdottir, H.S., Mizera, S.: What is the \(i\varepsilon \) for the S-Matrix? arXiv:2204.02988 [hep-th]

  36. Weinberg, S.: High-energy behavior in quantum field theory. Phys. Rev. 118, 838–849 (1960)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Speer, E.R.: Ultraviolet and infrared singularity structure of generic Feynman amplitudes. Ann. Inst. H. Poincare Phys. Theor. 23, 1–21 (1975)

    ADS  MathSciNet  Google Scholar 

  38. Speer, E.R.: “Generalized Feynman Amplitudes,” vol. 62 of Annals of Mathematics Studies. Princeton University Press, New Jersey (1969)

  39. Laporta, S.: Calculation of master integrals by difference equations. Phys. Lett. B 504, 188–194 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Smirnov, A.V., Petukhov, A.V.: The number of master integrals is finite. Lett. Math. Phys. 97, 37–44 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lee, R.N., Pomeransky, A.A.: Critical points and number of master integrals. JHEP 11, 165 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Henn, J.M.: Lectures on differential equations for Feynman integrals. J. Phys. A 48, 153001 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84, 255–271 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Klausen, R.P.: Hypergeometric series representations of Feynman integrals by Gkz hypergeometric systems. JHEP 04, 121 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Feng, T.F., Chang, C.H., Chen, J.B., Zhang, H.B.: Gkz-hypergeometric systems for Feynman integrals. Nucl. Phys. B 953, 114952 (2020)

    MathSciNet  MATH  Google Scholar 

  46. de la Cruz, L.: Feynman integrals as A-hypergeometric functions. JHEP 12, 123 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Tarasov, O.V.: Connection between Feynman integrals having different values of the space-time dimension. Phys. Rev. D 54, 6479 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Koutschan, C.: HolonomicFunctions (user’s guide). Technical Report 10-01, RISC Report Series, Johannes Kepler University, Linz, Austria (2010). http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  49. Bostan, A., Lairez, P., Salvy, B.: Creative telescoping for rational functions using the Griffiths–Dwork method. In Proceedings of the 38th international symposium on symbolic and algebraic computation, pp. 93–100

  50. Picard, É.: Quelques remarques sur les intégrales doubles de seconde espèce dans la théorie des surfaces algébriques. C. R. Acad. Sci. Paris 129, 539–540 (1899)

    MATH  Google Scholar 

  51. Griffiths, P.A.: On the periods of certain rational integrals. Ann. Math. 90, 460–541 (1969)

    MathSciNet  MATH  Google Scholar 

  52. Dwork, B.: On the zeta function of a hypersurface. Inst. Hautes Études Sci. Publ. Math. 12, 5–68 (1962)

    MathSciNet  MATH  Google Scholar 

  53. Dwork, B.: On the zeta function of a hypersurface: II. Ann. Math. 80, 227–299 (1964)

    MathSciNet  MATH  Google Scholar 

  54. Verrill, H.: Root lattices and pencils of varieties. J. Math. Kyoto Univ. 36(2), 423–446 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Batyrev, V.V., Ciocan-Fontanine, I., Kim, B., van Straten, D.: Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians. Nucl. Phys. B 514, 640–666 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222 [hep-th]

  57. Coates, T., Corti, A., Galkin, S., Golyshev, V., Kasprzyk, A.: Mirror symmetry and Fano manifolds. In: European Congress of Mathematics (Kraków, 2-7 July, 2012), November 2013, pp. 285–300 (2012). arXiv:1212.1722

  58. Bloch, S., Vanhove, P.: The elliptic dilogarithm for the sunset graph. J. Number Theor. 148, 328–364 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Doran, C., Novoseltsev, A., Vanhove, P.: Mirroring Towers: The Calabi–Yau Geometry of the Multiloop Sunset Feynman Integrals (to appear)

  60. Candelas, P., de la Ossa, X., Kuusela, P., McGovern, J.: Mirror symmetry for five-parameter Hulek–Verrill manifolds. arXiv:2111.02440 [hep-th]

  61. Müller-Stach, S., Weinzierl, S., Zayadeh, R.: Picard–Fuchs equations for Feynman integrals. Commun. Math. Phys. 326, 237 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Kreimer, D.: Bananas: multi-edge graphs and their Feynman integrals. arXiv:2202.05490 [hep-th]

  63. Müller-Stach, S., Weinzierl, S., Zayadeh, R.: A second-order differential equation for the two-loop sunrise graph with arbitrary masses. Commun. Num. Theor. Phys. 6, 203–222 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Vanhove, P.: ’Mirroring towers of Feynman integrals: Fibration and degeneration in Feynman integral Calabi–Yau geometries (String Math 2019)

  65. Verrill, H.: Sums of squares of binomial coefficients, with applications to Picard–Fuchs equations. arXiv:math/0407327

  66. Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage. http://www.risc.jku.at/research/combinat/software/ore_algebra

  67. Mezzarobba, M.: Rigorous multiple-precision evaluation of D-finite functions in SageMath. In: 5th International Congress on Mathematical Software (ICMS 2016), Jul 2016, Berlin, Germany. arXiv:1607.01967

  68. Klausen, R.P.: Kinematic singularities of Feynman integrals and principal A-determinants. JHEP 02, 004 (2022). [arXiv:2109.07584 [hep-th]]

    ADS  MathSciNet  MATH  Google Scholar 

  69. Fakler, W.: On second order homogeneous linear differential equations with Liouvillian solutions. Theor. Comput. Sci. 187, 27–48 (1997)

    MathSciNet  MATH  Google Scholar 

  70. Doran, C.F., Harder, A., Pichon-Pharabod, E., Vanhove, P.: Motivic Geometry of Two-Loop Feynman Integrals. arXiv:2302.14840 [math.AG]

  71. Morrison, D.R.: Picard–Fuchs equations and mirror maps for hypersurfaces. AMS/IP Stud. Adv. Math. 9, 185 (1998)

    MATH  Google Scholar 

  72. Duhr, C., Klemm, A., Nega, C., Tancredi, L.: The ice cone family and iterated integrals for Calabi–Yau varieties. JHEP 02, 228 (2023)

    ADS  MathSciNet  Google Scholar 

  73. Broadhurst, D.J.: The master two loop diagram with masses. Z. Phys. C 47, 115–124 (1990)

    Google Scholar 

  74. Remiddi, E., Tancredi, L.: Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 907, 400–444 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Adams, L., Bogner, C., Schweitzer, A., Weinzierl, S.: The kite integral to all orders in terms of elliptic polylogarithms. J. Math. Phys. 57(12), 122302 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  76. Bogner, C., Schweitzer, A., Weinzierl, S.: Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. Nucl. Phys. B 922, 528–550 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Bogner, C., Schweitzer, A., Weinzierl, S.: Analytic Continuation of the kite Family. arXiv:1807.02542 [hep-th]

  78. Broedel, J., Duhr, C., Dulat, F., Penante, B., Tancredi, L.: Elliptic Feynman integrals and pure functions. JHEP 01, 023 (2019). https://doi.org/10.1007/JHEP01(2019)023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Bezuglov, M.A., Onishchenko, A.I., Veretin, O.L.: Massive kite diagrams with elliptics. Nucl. Phys. B 963, 115302 (2021)

    MathSciNet  MATH  Google Scholar 

  80. Caron-Huot, S., Larsen, K.J.: Uniqueness of two-loop master contours. JHEP 10, 026 (2012)

    ADS  Google Scholar 

  81. Bloch, S.: Double box motive. SIGMA 17, 048 (2021)

    MathSciNet  MATH  Google Scholar 

  82. Bourjaily, J.L., McLeod, A.J., Spradlin, M., von Hippel, M., Wilhelm, M.: Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms. Phys. Rev. Lett. 120(12), 121603 (2018)

    ADS  Google Scholar 

  83. Pozo, A.C., von Hippel, M.: A Three-Parameter Elliptic Double-Box. arXiv:2209.03921 [hep-th]

Download references

Acknowledgements

We thank David Broadhurst, Francis Brown, Charles Doran, Andrew Harder, and Andrey Novoseltsev for discussions and comments. We specially thank Alexandre Goyer and Marc Mezzarobba for help in factoring differential operators. We are grateful to IHES for making their computer resources available. This work has been supported by the ANR grant “Amplitude” ANR-17- CE31-0001-01, the ANR grant “SMAGP” ANR-20-CE40-0026-01, the ANR grant “De Rerum Natura” ANR-19-CE40-0018, and by the European Research Council under the European Union’s Horizon Europe research and innovation programme, grant agreement 101040794 (10000 DIGITS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Vanhove.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lairez, P., Vanhove, P. Algorithms for minimal Picard–Fuchs operators of Feynman integrals. Lett Math Phys 113, 37 (2023). https://doi.org/10.1007/s11005-023-01661-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01661-3

Keywords

Mathematics Subject Classification

Navigation