Skip to main content
Log in

Targeting the hypoxia inducible factor pathway with mitochondrial uncouplers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxia inducible factor-1 (HIF-1) is central to most adaptation responses of tumors to hypoxia, and consists of a hypoxia inducible HIF-1α or -2α subunit, and a constitutively expressed HIF-1β subunit. Previously, mitochondrial uncouplers, rottlerin and FCCP, were shown to increase the rate of cellular O2 consumption. In this study, we determined that mitochondrial uncouplers, rottlerin and FCCP, significantly decreased hypoxic as well as normoxic HIF-1 transcriptional activity which was in part mediated by down-regulation of the oxygen labile HIF-1α and HIF-2α protein levels in PC-3 and DU-145 prostate cancer cells. Our results also revealed that mitochondrial uncouplers decreased the expression of HIF target genes, VEGF and VEGF receptor-2. Taken together, our results indicate that functional mitochondria are important in HIF-1α and HIF-2α protein stability and transcriptional activity during normoxia as well as in hypoxia, and that mitochondrial uncouplers may be useful in the inhibition of HIF pathway in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732

    Article  PubMed  CAS  Google Scholar 

  2. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54

    Article  PubMed  CAS  Google Scholar 

  3. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472

    PubMed  CAS  Google Scholar 

  4. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  5. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin Jr. WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468

    PubMed  CAS  Google Scholar 

  6. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340

    Article  PubMed  CAS  Google Scholar 

  7. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295: 858–861

    Article  PubMed  CAS  Google Scholar 

  8. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16: 1466–1471

    Article  PubMed  CAS  Google Scholar 

  9. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271: 17771–17778

    Article  PubMed  CAS  Google Scholar 

  10. Bruick RK, McKnight SL (2002) Transcription. Oxygen sensing gets a second wind. Science 295: 807–808

    Article  PubMed  CAS  Google Scholar 

  11. Hopfl G, Ogunshola O, Gassmann M (2004) HIFs and tumors-causes and consequences. Am J Physiol Regul Integr Comp Physiol 286: R608–R623

    PubMed  Google Scholar 

  12. Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2: 803–811

    Article  PubMed  CAS  Google Scholar 

  13. Zhong H, Semenza GL, Simons JW, De Marzo AM (2004) Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev 28: 88–93

    Article  PubMed  CAS  Google Scholar 

  14. Zhong H, Agani F, Baccala AA, Laughner E, Rioseco-Camacho N, Isaacs WB, Simons JW, Semenza GL (1998) Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res 58: 5280–5284

    PubMed  CAS  Google Scholar 

  15. Hao P, Chen X, Geng H, Gu L, Chen J, Lu G (2004) Expression and implication of hypoxia inducible factor-1alpha in prostate neoplasm. J Huazhong Univ Sci Technolog Med Sci 24: 593–595

    Article  PubMed  CAS  Google Scholar 

  16. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283: L922–L931

    PubMed  CAS  Google Scholar 

  17. Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302: 1975–1978

    Article  PubMed  CAS  Google Scholar 

  18. Mateo J, Garcia-Lecea M, Cadenas S, Hernandez C, Moncada S (2003) Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways. Biochem J 376: 537–544

    Article  PubMed  CAS  Google Scholar 

  19. Soltoff SP (2001) Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cdelta tyrosine phosphorylation. J Biol Chem 276: 37986–37992

    PubMed  CAS  Google Scholar 

  20. Baby SM, Roy A, Lahiri S (2005) Role of mitochondria in the regulation of hypoxia-inducible factor-1alpha in the rat carotid body glomus cells. Histochem Cell Biol 124: 69–76

    Article  PubMed  CAS  Google Scholar 

  21. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271: C1172–C1180

    PubMed  CAS  Google Scholar 

  22. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275

    Article  PubMed  CAS  Google Scholar 

  23. Burroughs KD, Oh J, Barrett JC, DiAugustine RP (2003) Phosphatidylinositol 3-kinase and mek1/2 are necessary for insulin-like growth factor-I-induced vascular endothelial growth factor synthesis in prostate epithelial cells: a role for hypoxia-inducible factor-1? Mol Cancer Res 1: 312–322

    PubMed  CAS  Google Scholar 

  24. Palayoor ST, Tofilon PJ, Coleman CN (2003) Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res 9: 3150–3157

    PubMed  CAS  Google Scholar 

  25. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272: 19253–19260

    Article  PubMed  CAS  Google Scholar 

  26. Hirsila M, Koivunen P, Xu L, Seeley T, Kivirikko KI, Myllyharju J (2005) Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. Faseb J 19: 1308–1310

    PubMed  CAS  Google Scholar 

  27. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130–25138

    Article  PubMed  CAS  Google Scholar 

  28. Tirosh O, Aronis A, Melendez JA (2003) Mitochondrial state 3–4 respiration transition during Fas-mediated apoptosis controls cellular redox balance and rate of cell death. Biochem Pharmacol 66: 1331–1334

    Article  PubMed  CAS  Google Scholar 

  29. Vancurova I, Miskolci V, Davidson D (2001) NF-kappa B activation in tumor necrosis factor alpha-stimulated neutrophils is mediated by protein kinase Cdelta. Correlation to nuclear Ikappa Balpha. J Biol Chem 276: 19746–19752

    Article  PubMed  CAS  Google Scholar 

  30. Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G, Marks F (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199: 93–98

    Article  PubMed  CAS  Google Scholar 

  31. Kayali AG, Austin DA, Webster NJ (2002) Rottlerin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes by uncoupling mitochondrial oxidative phosphorylation. Endocrinology 143: 3884–3896

    Article  PubMed  CAS  Google Scholar 

  32. Tillman DM, Izeradjene K, Szucs KS, Douglas L, Houghton JA (2003) Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C. Cancer Res 63: 5118–5125

    PubMed  CAS  Google Scholar 

  33. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68: 1145–1155

    Article  PubMed  CAS  Google Scholar 

  34. Kappel A, Ronicke V, Damert A, Flamme I, Risau W, Breier G (1999) Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93: 4284–4292

    PubMed  CAS  Google Scholar 

  35. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54: 101–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter RatCliffe and Dr. Richard P. DiAugustine for providing us with the plasmid constructs. This work was supported by NIH grant # 1R21CA102382 to M. H. Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Kim, M.H. Targeting the hypoxia inducible factor pathway with mitochondrial uncouplers. Mol Cell Biochem 296, 35–44 (2007). https://doi.org/10.1007/s11010-006-9295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9295-3

Key words:

Navigation