Skip to main content
Log in

Casein kinase 2 inhibition differentially modulates apoptotic effect of trichostatin A against epithelial ovarian carcinoma cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Histone deacetylase inhibitors and casein kinase 2 inhibitors have been shown to induce apoptosis. However, the combined effect of casein kinase 2 inhibition on the apoptotic effect of histone deacetylase inhibitor is unknown. We assessed the effect of casein kinase 2 inhibition on the apoptotic effect of trichostatin A in human epithelial carcinoma cell lines with respect to cell death signaling pathways. At concentrations that did not induce cell death, the casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited activation of apoptotic proteins and changes in mitochondrial membrane permeability induced by the histone deacetylase inhibitor trichostatin A. These results suggest that casein kinase 2 inhibition may reduce trichostatin A-induced apoptosis in ovarian carcinoma cell lines by suppressing activation of apoptotic proteins and changes in mitochondrial membrane permeability, which both lead to caspase-3 activation. Casein kinase 2 inhibition, which does not induce a cytotoxic effect, may prevent histone deacetylase inhibitor-mediated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TBB:

4,5,6,7-tetrabromobenzotriazole

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. Rasheed WK, Johnstone RW, Prince HM (2007) Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs 16:659–678. doi:10.1517/13543784.16.5.659

    Article  CAS  PubMed  Google Scholar 

  2. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671. doi:10.1016/j.bcp.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  3. Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H (2007) The HDAC inhibitor trichostatin A inhibits growth of small cell lung cancer cells. J Surg Res 142:219–226. doi:10.1016/j.jss.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  4. Wu ZQ, Zhang R, Chao C, Zhang JF, Zhang YQ (2007) Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell. Chin Med J 120:2112–2118

    CAS  PubMed  Google Scholar 

  5. Sonnemann J, Hüls I, Sigler M, Palani CD, le Hong TT, Völker U, Kroemer HK, Beck JF (2008) Histone deacetylase inhibitors and aspirin interact synergistically to induce cell death in ovarian cancer cells. Oncol Rep 20:219–224

    CAS  PubMed  Google Scholar 

  6. Sonnemann J, Kumar KS, Heesch S, Müller C, Hartwig C, Maass M, Bader P, Beck JF (2006) Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells. Int J Oncol 28:755–766

    CAS  PubMed  Google Scholar 

  7. Arnold NB, Arkus N, Gunn J, Korc M (2007) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clin Cancer Res 13:18–26. doi:10.1158/1078-0432.CCR-06-0914

    Article  CAS  PubMed  Google Scholar 

  8. Pan L, Lu J, Wang X, Han L, Zhang Y, Han S, Huang B (2007) Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. Cancer 109:1676–1688. doi:10.1002/cncr.22585

    Article  CAS  PubMed  Google Scholar 

  9. Rosato RR, Grant S (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2:30–37

    PubMed  Google Scholar 

  10. Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25:1608–1619. doi:10.1128/MCB.25.5.1608-1619.2005

    Article  CAS  PubMed  Google Scholar 

  11. Kumar KS, Sonnemann J, Beck JF (2006) Histone deacetylase inhibitors induce cell death in supratentorial primitive neuroectodermal tumor cells. Oncol Rep 16:1047–1052

    CAS  PubMed  Google Scholar 

  12. Allende JE, Allende CC (1995) Protein kinase 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9:313–323

    CAS  PubMed  Google Scholar 

  13. Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008) Protein kinase CK2—a key suppressor of apoptosis. Adv Enzyme Regul 48:179–187. doi:10.1016/j.advenzreg.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  14. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47. doi:10.1016/j.bbapap.2007.08.017

    CAS  PubMed  Google Scholar 

  15. Pallares J, Llobet D, Santacana M, Eritja N, Velasco A, Cuevas D, Lopez S, Palomar-Asenjo V, Yeramian A, Dolcet X, Matias-Guiu X (2009) CK2β is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation. Am J Pathol 174:287–296. doi:10.2353/ajpath.2009.080552

    Article  CAS  PubMed  Google Scholar 

  16. Torkin R, Lavoie JF, Kaplan DR, Yeger H (2005) Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther 4:1–11

    CAS  PubMed  Google Scholar 

  17. Ahmad KA, Wang G, Ahmed K (2006) Intracellular hydrogen peroxide production is an upstream event in apoptosis induced by down-regulation of casein kinase 2 in prostate cancer cells. Mol Cancer Res 4:331–338. doi:10.1158/1541-7786.MCR-06-0073

    Article  CAS  PubMed  Google Scholar 

  18. Chiang LC, Ng LT, Lin IC, Kuo PL, Lin CC (2006) Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer Lett 237:207–214. doi:10.1016/j.canlet.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  19. Wang CN, Chi CW, Lin YL, Chen CF, Shiao YJ (2001) The neuroprotective effects of phytoestrogens on amyloid β protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J Biol Chem 276:5287–5295. doi:10.1074/jbc.M006406200

    Article  CAS  PubMed  Google Scholar 

  20. Kang SS, Lee JY, Choi YK, Kim GS, Han BH (2004) Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg Med Chem Lett 14:2261–2264. doi:10.1016/j.bmcl.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  21. Silva B, Oliveira PJ, Dias A, Malva JO (2008) Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotox Res 13:265–279

    Article  CAS  PubMed  Google Scholar 

  22. Zhou C, Qiu L, Sun Y, Healey S, Wanebo H, Kouttab N, Di W, Yan B, Wan Y (2006) Inhibition of EGFR/PI3 K/AKT cell survival pathway promotes TSA’s effect on cell death and migration in human ovarian cancer cells. Int J Oncol 29:269–278

    CAS  PubMed  Google Scholar 

  23. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A (2005) Inhibition of MEK/ERK signaling synergistically potentiates histone deacetylase inhibitor-induced growth arrest, apoptosis and acetylation of histone H3 on p21waf1 promoter in acute myelogenous leukemia cell. Leukemia 22:1449–1452. doi:10.1038/sj.leu.2405079

    Article  CAS  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  25. Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc Natl Acad Sci 89:5408–5412

    Article  CAS  PubMed  Google Scholar 

  26. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Nèel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905. doi:10.1038/sj.cdd.4401434

    Article  CAS  PubMed  Google Scholar 

  27. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  28. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729. doi:10.1016/S1470-2045(03)01277-4

    Article  CAS  PubMed  Google Scholar 

  29. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147:239–248. doi:10.1038/sj.bjp.0706556

    Article  CAS  PubMed  Google Scholar 

  30. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci 98:10833–10838. doi:10.1073/pnas.191208598

    Article  CAS  PubMed  Google Scholar 

  31. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:10.1038/sj.cdd.4401908

    Article  CAS  PubMed  Google Scholar 

  32. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13:921–926. doi:10.1038/sj.cdd.4401921

    Article  CAS  PubMed  Google Scholar 

  33. Izeradjene K, Douglas L, Delaney A, Houghton JA (2005) Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene 24:2050–2058. doi:10.1038/sj.onc.1208397

    Article  CAS  PubMed  Google Scholar 

  34. Wang G, Ahmad KA, Ahmed K (2005) Modulation of death receptor-mediated apoptosis by CK2. Mol Cell Biochem 274:201–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A085138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.S., Jang, ER., Kim, Y.J. et al. Casein kinase 2 inhibition differentially modulates apoptotic effect of trichostatin A against epithelial ovarian carcinoma cell lines. Mol Cell Biochem 338, 157–166 (2010). https://doi.org/10.1007/s11010-009-0349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0349-1

Keywords

Navigation