Skip to main content
Log in

Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dinarello CA (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 112:321s–329s

    Article  CAS  PubMed  Google Scholar 

  2. Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL (2003) Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov 2:736–746. doi:10.1038/nrd1175

    Article  CAS  PubMed  Google Scholar 

  3. Levine SJ (1995) Bronchial epithelial cell-cytokine interactions in airway inflammation. J Investig Med 43:241–249

    CAS  PubMed  Google Scholar 

  4. Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270. doi:10.1146/annurev.med.51.1.245

    Article  CAS  PubMed  Google Scholar 

  5. Arnold R, Humbert B, Werchau H, Gallati H, Konig W (1994) Interleukin-8, interleukin-6, and soluble tumour necrosis factor receptor type I release from a human pulmonary epithelial cell line (A549) exposed to respiratory syncytial virus. Immunology 82:126–133

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Esposito E, Cuzzocrea S (2007) The role of nitric oxide synthases in lung inflammation. Curr Opin Investig Drugs 8:899–909

    CAS  PubMed  Google Scholar 

  7. Murakami A, Ohigashi H (2007) Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer 121:2357–2363. doi:10.1002/ijc.23161

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell JA, Larkin S, Williams TJ (1995) Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol 50:1535–1542

    Article  CAS  PubMed  Google Scholar 

  9. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  CAS  PubMed  Google Scholar 

  10. Papavassiliou AG (1995) Transcription factors: structure, function, and implication in malignant growth. Anticancer Res 15:891–894

    CAS  PubMed  Google Scholar 

  11. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734. doi:10.1038/nri910

    Article  CAS  PubMed  Google Scholar 

  12. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288. doi:10.1016/j.it.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  13. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. doi:10.1038/ncb0502-e131

    Article  CAS  PubMed  Google Scholar 

  14. Guo RF, Lentsch AB, Sarma JV, Sun L, Riedemann NC, McClintock SD, McGuire SR, Van Rooijen N, Ward PA (2002) Activator protein-1 activation in acute lung injury. Am J Pathol 161:275–282. doi:10.1016/s0002-9440(10)64179-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bjarnason I, Hayllar J, MacPherson AJ, Russell AS (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104:1832–1847

    CAS  PubMed  Google Scholar 

  16. Maruta A, Enaka K, Umeda M (1979) Mutagenicity of quercetin and kaempferol on cultured mammalian cells. Gann 70:273–276

    CAS  PubMed  Google Scholar 

  17. Wei H, Tye L, Bresnick E, Birt DF (1990) Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res 50:499–502

    CAS  PubMed  Google Scholar 

  18. Hirano T, Oka K, Akiba M (1989) Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line, ZR-75-1. Res Commun Chem Pathol Pharmacol 64:69–78

    CAS  PubMed  Google Scholar 

  19. Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81:447–455

    CAS  PubMed  Google Scholar 

  20. Babu RL, Naveen Kumar M, Patil RH, Devaraju KS, Ramesh GT, Sharma SC (2013) Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation. Mol Cell Biochem 380:143–151. doi:10.1007/s11010-013-1667-x

    Article  CAS  PubMed  Google Scholar 

  21. Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT (2007) Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466–2472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Periyakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT (2007) Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 81:389–395. doi:10.1007/s00204-006-0167-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Eigler A, Moeller J, Endres S (1995) Exogenous and endogenous nitric oxide attenuates tumor necrosis factor synthesis in the murine macrophage cell line RAW 264.7. J Immunol 154:4048–4054

    CAS  PubMed  Google Scholar 

  24. Sharma SC, Clemens JW, Pisarska MD, Richards JS (1999) Expression and function of estrogen receptor subtypes in granulosa cells: regulation by estradiol and forskolin. Endocrinology 140:4320–4334. doi:10.1210/endo.140.9.6965

    CAS  PubMed  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Jeong HJ, Moon PD, Lee KM, Lee HB, Jung HJ, Jung SK, Rhee HK, Yang DC, Hong SH, Kim HM (2005) Anti-inflammatory activity of gumiganghwaltang through the inhibition of nuclear factor-kappa B activation in peritoneal macrophages. Biol Pharm Bull 28:233–237

    Article  CAS  PubMed  Google Scholar 

  27. Kowalski J, Samojedny A, Paul M, Pietsz G, Wilczok T (2005) Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774.2 macrophages. Pharmacol Rep 57:390–394

    CAS  PubMed  Google Scholar 

  28. Lee JH, Zhou HY, Cho SY, Kim YS, Lee YS, Jeong CS (2007) Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch Pharm Res 30:1318–1327

    Article  CAS  PubMed  Google Scholar 

  29. Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI (2007) Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 179:7121–7127

    Article  CAS  PubMed  Google Scholar 

  30. Jeong GS, Lee SH, Jeong SN, Kim YC, Kim EC (2009) Anti-inflammatory effects of apigenin on nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells via heme oxygenase-1. Int Immunopharmacol 9:1374–1380. doi:10.1016/j.intimp.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  31. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350. doi:10.1146/annurev.immunol.15.1.323

    Article  CAS  PubMed  Google Scholar 

  32. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916. doi:10.1038/ni1001-907

    Article  CAS  PubMed  Google Scholar 

  33. Hobbs AJ, Higgs A, Moncada S (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 39:191–220. doi:10.1146/annurev.pharmtox.39.1.191

    Article  CAS  PubMed  Google Scholar 

  34. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952

    Article  CAS  PubMed  Google Scholar 

  35. Vane SJ (1998) Differential inhibition of cyclooxygenase isoforms: an explanation of the action of NSAIDs. J Clin Rheumatol 4:s3–s10

    Article  CAS  PubMed  Google Scholar 

  36. Jachak SM (2006) Cyclooxygenase inhibitory natural products: current status. Curr Med Chem 13:659–678

    Article  CAS  PubMed  Google Scholar 

  37. Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305:253–264

    Article  CAS  PubMed  Google Scholar 

  38. Krakauer T (2004) Molecular therapeutic targets in inflammation: cyclooxygenase and NF-kappaB. Curr Drug Targets Inflamm Allergy 3:317–324

    Article  CAS  PubMed  Google Scholar 

  39. Mazzucchelli L, Hauser C, Zgraggen K, Wagner H, Hess M, Laissue JA, Mueller C (1994) Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. Am J Pathol 144:997–1007

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Milde-Langosch K, Kappes H, Riethdorf S, Loning T, Bamberger AM (2003) FosB is highly expressed in normal mammary epithelia, but down-regulated in poorly differentiated breast carcinomas. Breast Cancer Res Treat 77:265–275

    Article  CAS  PubMed  Google Scholar 

  41. Morrissey C, O’Neill A, Spengler B, Christoffel V, Fitzpatrick JM, Watson RW (2005) Apigenin drives the production of reactive oxygen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells. Prostate 63:131–142. doi:10.1002/pros.20167

    Article  CAS  PubMed  Google Scholar 

  42. Yoon JH, Baek SJ (2005) Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 46:585–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to UGC for the financial support granted to Centre with Potential for Excellence in Particular Area (UGC-CPEPA) grant [8-2/2008(NS/PE)] and Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE), New Delhi [SR/59/Z-23/2010/38(c)] for financial support to Bangalore University, Bangalore. Authors also express their gratitude to UGC for BSR fellowship provided to Rajeshwari H Patil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chidananda Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R.H., Babu, R.L., Naveen Kumar, M. et al. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells. Mol Cell Biochem 403, 95–106 (2015). https://doi.org/10.1007/s11010-015-2340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2340-3

Keywords

Navigation