Skip to main content
Log in

Caffeic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Caffeic acid phenethyl ester (CAPE) exhibits various pharmaceutical properties, including anti-bacterial, anti-inflammatory, anti-viral, anti-cancer, and anti-oxidative activity. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been a promising anti-cancer agent that preferentially induces cancer cell apoptosis with negligible cytotoxicity toward normal cells. Therefore, the present study investigated whether CAPE promotes TRAIL-mediated cytotoxicity in hepatocarcinoma Hep3B cells. The present study demonstrated that CAPE sensitized TRAIL-mediated cell death in Hep3B carcinoma cells. The percentages of the apoptotic cells and annexin-V+ cells significantly increased in combined treatment with CAPE and TRAIL (CAPE/TRAIL). Treatment with pancaspase inhibitor, z-VAD-fmk, attenuated CAPE/TRAIL-induced apoptosis, suggesting that the combined treatment triggers caspase-dependent apoptosis. Additionally, we found that CAPE stimulated the expression of death receptor 5 (DR5) and treatment with DR5/Fc chimera protein significantly blocked CAPE/TRAIL-induced apoptosis, which indicates that CAPE/TRAIL stimulated apoptosis through the binding of TRAIL to DR5. Moreover, expression of transcription factor C/EBP homologous protein (CHOP) markedly increased in response to CAPE and transient knockdown of CHOP abolished CAPE/TRAIL-mediated apoptosis. These results suggest that CHOP is a key regulator in CAPE/TRAIL-mediated apoptosis. Taken together, the present study found that CAPE significantly enhanced TRAIL-mediated apoptosis in Hep3B carcinoma cells and suggested that CAPE has promising potential in chemoprevention of hepatocellular carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mongkolsapaya J, Cowper AE, Xu XN et al (1998) Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol 160:3–6

    CAS  PubMed  Google Scholar 

  2. Shepard BD, Badley AD (2009) The biology of TRAIL and the role of TRAIL-based therapeutics in infectious diseases. Anti-infect Agents Med Chem 8:87–101

    Article  CAS  Google Scholar 

  3. Siegmund D, Mauri D, Peters N et al (2001) Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem 276:32585–32590

    Article  CAS  PubMed  Google Scholar 

  4. Stuckey DW, Shah K (2013) TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 19:685–694. doi:10.1016/j.molmed.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  5. Lemke J, von Karstedt S, Zinngrebe J, Walczak H (2014) Getting TRAIL back on track for cancer therapy. Cell Death Differ 21:1350–1364. doi:10.1038/cdd.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gieffers C, Kluge M, Merz C et al (2013) APG350 induces superior clustering of TRAIL receptors and shows therapeutic antitumor efficacy independent of cross-linking via Fcγ receptors. Mol Cancer Ther 12:2735–2747. doi:10.1158/1535-7163.MCT-13-0323

    Article  CAS  PubMed  Google Scholar 

  7. Lin JY, Ke YM, Lai JS, Ho TF (2015) Tanshinone IIA enhances the effect of TRAIL by downregulating survivin in human ovarian carcinoma cells. Phytomedicine 22:929–938. doi:10.1016/j.phymed.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279:45495–45502

    Article  CAS  PubMed  Google Scholar 

  9. Jung KJ, Min KJ, Bae JH, Kwon TK (2014) Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post transcriptional levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget 6:1556–1568

    Article  Google Scholar 

  10. Woo JS, Kim SM, Jeong CH, Ryu CH, Jeun SS (2013) Lipoxygenase inhibitor MK886 potentiates TRAIL-induced apoptosis through CHOP- and p38 MAPK-mediated up-regulation of death receptor 5 in malignant glioma. Biochem Biophys Res Commun 431:354–359. doi:10.1016/j.bbrc.2012.11.134

    Article  CAS  PubMed  Google Scholar 

  11. He Q, Luo X, Jin W et al (2008) Celecoxib and novel COX-2 inhibitor ON09310 upregulate death receptor 5 expression via GADD153/CHOP. Oncogene 27:2656–2660

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Omene C, Karkoszka J et al (2011) Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 308:43–53. doi:10.1016/j.canlet.2011.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evid Based Complement Altern Med 2015:206439. doi:10.1155/2015/206439

    Article  Google Scholar 

  14. Murtaza G, Karim S, Akram MR et al (2014) Caffeic acid phenethyl ester and therapeutic potentials. Biomed Res Int 2014:145342. doi:10.1155/2014/145342

    PubMed  PubMed Central  Google Scholar 

  15. Kim EY, Ryu JH, Kim AK (2013) CAPE promotes TRAIL-induced apoptosis through the upregulation of TRAIL receptors via activation of p38 and suppression of JNK in SK-Hep1 hepatocellular carcinoma cells. Int J Oncol 43:1291–1300. doi:10.3892/ijo.2013.2018

    CAS  PubMed  Google Scholar 

  16. Wang D, Xiang DB, He YJ et al (2005) Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J Gastroenterol 11:4008–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Szliszka E, Czuba ZP, Bronikowska J, Mertas A, Paradysz A, Krol W (2011) Ethanolic extract of propolis augments TRAIL-induced apoptotic death in prostate cancer cells. Evid Based Complement Altern Med 2011:535172. doi:10.1093/ecam/nep180

    Article  Google Scholar 

  18. Ulasli SS, Celik S, Gunay E et al (2013) Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac J Cancer Prev 14:6159–6164

    Article  PubMed  Google Scholar 

  19. El-Khattouti A, Sheehan NT, Monico J et al (2015) CD133+ melanoma subpopulation acquired to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 357:83–104. doi:10.1016/j.canlet.2014.10.043

    Article  CAS  PubMed  Google Scholar 

  20. Chen MJ, Chang WH, Lin CC et al (2008) Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 8:566–576. doi:10.1159/000159843

    Article  CAS  PubMed  Google Scholar 

  21. Tseng TH, Shen CH, Huang WS et al (2014) Activation of neutral-sphingomyelinease, MAPKs, and p75 NTR-mediating caffeic acid phenethyl ester-induced apoptosis in C6 glioma cells. J Biomed Sci 21:61. doi:10.1186/1423-0127-21-61

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang WC, Hsieh CH, Hsiao MW et al (2010) Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan J Obstet Gynecol 49:419–424. doi:10.1016/S1028-4559(10)60092-7

    Article  PubMed  Google Scholar 

  23. Murtaza G, Karim S, Akram MR et al (2013) Caffeic acid phenethylester and therapeutic potentials. Biomed Res Int 2014:145342. doi:10.1155/2014/145342

    Google Scholar 

  24. Ozen S, Akyol O, Iraz M et al (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–38

    Article  PubMed  Google Scholar 

  25. Griffith TS, Stokes B, Kucaba TA et al (2009) TRAIL gene therapy: from preclinical development to clinical application. Curr Gene Ther 9:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He L, Jang JH, Choi HG et al (2013) Oligomycin A enhances apoptotic effect of TRAIL through CHOP-mediated death receptor 5 expression. Mol Carcinog 52:85–93. doi:10.1002/mc.21831

    Article  PubMed  Google Scholar 

  27. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782–798. doi:10.1038/nrc2465

    Article  CAS  PubMed  Google Scholar 

  28. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. doi:10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hui KF, Chiang AK (2014) Combination of proteasome and class I HDAC inhibitors induces apoptosis of NPC cells through an HDAC6-independent ER stress-induced mechanism. Int J Cancer 135:2950–2961. doi:10.1002/ijc.28924

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Basic Science Research Program (2015R1D1A1A01060538) through the National Research Foundation of Korea (NRF) funded from the Ministry of Education, Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Young Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilshara, M.G., Jayasooriya, R.G.P.T., Park, S.R. et al. Caffeic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells. Mol Cell Biochem 418, 13–20 (2016). https://doi.org/10.1007/s11010-016-2726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2726-x

Keywords

Navigation