Skip to main content

Advertisement

Log in

2-Ethoxybenzamide stimulates melanin synthesis in B16F1 melanoma cells via the CREB signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Non-steroidal anti-inflammatory drugs are frequently used for the treatment of inflammation, pain, and fever. In this study, we found that 2-ethoxybenzamide (ETZ) significantly enhanced melanin synthesis in B16F1 melanoma cells, and also induced melanosome formation. Therefore, we investigated the mechanism by which ETZ up-regulated melanin synthesis. Western blot analysis demonstrated that ETZ increased melanogenic protein levels, except that for TRP-2. Moreover, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR analyses showed that ETZ enhanced the mRNA levels of melanogenic genes, including microphthalmia-associated transcription factor and melanocortin 1 receptor. We also observed phosphorylation of cAMP response element-binding protein (CREB) following ETZ treatment. However, ETZ did not affect intracellular cAMP levels. ERK was also activated by ETZ treatment, and melanin content was enhanced upon treatment with the specific ERK inhibitor PD98059. Together, our results indicate that ETZ induces melanin synthesis via CREB phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hosomi Y, Yokose T, Hirose Y, Nakajima R, Nagai K, Nishiwaki Y et al (2000) Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 30:73–81

    Article  CAS  PubMed  Google Scholar 

  2. Qiao L, Hanif R, Sphicas E, Shiff SJ, Rigas B (1998) Effect of aspirin on induction of apoptosis in HT-29 human colon adenocarcinoma cells. Biochem Pharmacol 55:53–64

    Article  CAS  PubMed  Google Scholar 

  3. Rao CV, Redy BS (2004) NSAIDs and chemoprevention. Curr Cancer Drug Targets 4:29–42

    Article  CAS  PubMed  Google Scholar 

  4. Wong BC, Zhu GH, Lam SK (1999) Aspirin induced apoptosis in gastric cancer cells. Biomed Pharmacother 53:315–318

    Article  CAS  PubMed  Google Scholar 

  5. Jana NR (2008) NSAIDs and apoptosis. Cell Mol Life Sci 65:1295–1301

    Article  CAS  PubMed  Google Scholar 

  6. Piazza GA, Rahm AK, Finn TS, Fryer BH, Li H, Stoumen AL et al (1997) Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res 57:2452–2459

    CAS  PubMed  Google Scholar 

  7. Bhattacharyya S, Ghosh S, Sil PC (2014) Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus Niruri. PLoS One 9:e89026

    Article  PubMed  PubMed Central  Google Scholar 

  8. Born G, Patrono C (2006) Antiplatelet drugs. Br J Pharmacol 147(Suppl. 1):S241–S251

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Butenas S, Cawthern KM, van’t Veer C, DiLorenzo ME, Lock JB, Mann KG (2001) Antiplatelet agents in tissue factor-induced blood coagulation. Blood 97:2314–2322

    Article  CAS  PubMed  Google Scholar 

  10. Przybyłek M, Ziółkowska D, Mroczynska K, Cysewski P (2016) Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acid. Eur J Pharm Sci 31:132–140

    Article  Google Scholar 

  11. Kalgutkar AS, Marnett AB, Crews BC, Remmel RP, Marnett LJ (2000) Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J Med Chem 43:2860–2870

    Article  CAS  PubMed  Google Scholar 

  12. Korner A, Pawelek J (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217:1163–1165

    Article  CAS  PubMed  Google Scholar 

  13. Hearing VJ, Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5:2902–2909

    CAS  PubMed  Google Scholar 

  14. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281:981–8990

    Article  Google Scholar 

  15. Decker H, Schweikardt T, Tuczek F (2006) The first crystal structure of tyrosinase: all questions answered? Angew Chem Int Ed 45:4546–4550

    Article  CAS  Google Scholar 

  16. Aroca P, Solano F, Salinas C, Garcia-Borron JC, Lozano JA (1992) Regulation of the final phase of mammalian melanogenesis: the role of DOPAchrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Eur J Biochem 208:155–163

    Article  CAS  PubMed  Google Scholar 

  17. Jackson IJ, Chambers DM, Tsukamoto K, Copeland NG, Gilbert DJ, Jenkins NA, Hearing VJ (1992) A second tyrosinase-related protein, TRP-2, maps to and its mutated at the mouse slaty locus. EMBO J 11:527–535

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kameyama K, Takemura T, Hamada Y, Sakai C, Kondoh S, Nishiyama S, Urabe K, Hearing VJ (1993) Pigment production in murine melanoma cells in regulated by tyrosinase-related protein 1 (TRP-1), DOPAchrome tautomerase (TRP-2), and a melanogenic inhibitor. J Investig Dermatol 100:126–131

    Article  CAS  PubMed  Google Scholar 

  19. Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ (1992) A second tyrosinase-related protein, TRP-2 is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 11:519–526

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Romeo-Griallet C, Aberdam E, Biagoli N, Massabni W, Ortonne JP, Balloti R (1996) Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem 271:28052–28056

    Article  Google Scholar 

  21. Park HY, Perez JM, Laursen R, Hara M, Gilchrest BA (1999) Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Biol Chem 274:16470–16478

    Article  CAS  PubMed  Google Scholar 

  22. Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Ann Rev Genet 38:365–411

    Article  CAS  PubMed  Google Scholar 

  23. Bertlotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142:827–835

    Article  Google Scholar 

  24. Englaro W, Bertolotto C, Busca R, Brunet A, Pages G, Ortonne JP et al (1998) Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J Biol Chem 273:9966–9970

    Article  CAS  PubMed  Google Scholar 

  25. Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET et al (2000) Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res 255:135–143

    Article  CAS  PubMed  Google Scholar 

  26. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE (1998) MAP kinase links the transcription factor microphthalmia to c-kit signaling in melanocyte. Nature 391:298–301

    Article  CAS  PubMed  Google Scholar 

  27. Lee J, Jung E, Park J, Jung K, Park E, Kim J, Hong S, Park J, Park S, Lee S, Park D (2005) Glycyrrhizin induces melanogenesis by elevating a cAMP level in B16 melanoma cells. J Invest Dermatol 124:405–411

    Article  CAS  PubMed  Google Scholar 

  28. Yoon HS, Lee SR, Ko HC, Choi SY, Park JG, Kim JK, Kim SJ (2007) Involvement of extracellular signal-regulated kinase in nobiletin-induced melanogenesis in murine B16/F10 melanoma cells. Biosci Biotechnol Biochem 71:1781–1784

    Article  CAS  PubMed  Google Scholar 

  29. Nishio T, Usami M, Awaji M, Shinohara S, Sato K (2016) Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Mol Cell Biochem 412:101–110

    Article  CAS  PubMed  Google Scholar 

  30. Sato K, Takahashi H, Toriyama M (2011) Depigmenting mechanism of NSAIDs on B16F1 melanoma cells. Arch Dermatol Res. 303:171–180

    Article  CAS  PubMed  Google Scholar 

  31. Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, Nel A (2004) Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 112:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin ML, Park SY, Kim YH, Park G, Son HJ, Lee SJ (2012) Suppression of α-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3 K/Akt and ERK-dependent mechanisms. Int J Mol Med 29:119–124

    CAS  PubMed  Google Scholar 

  33. Sato K, Morita M, Ichikawa C, Takahashi H, Toriyama M (2008) Depigmenting mechanisms of all-trans retinoic acid and retinol on B16 melanoma cells. Biosci Biotechnol Biochem 72:2589–2597

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔC(T) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR (2006) Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem 281:29228–29235

    Article  CAS  PubMed  Google Scholar 

  36. Guthrie HD, Welch GR (2006) Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci 84:2089–2100

    Article  CAS  PubMed  Google Scholar 

  37. Ashton M, Hanson PJ (2002) Disparate effects of non-steroidal anti-inflammatory drugs on apoptosis in guinea-pig gastric mucous cells: inhibition of basal apoptosis by diclofenac. Br J Pharmacol 135:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Busca R, Ballotti R (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13:60–69

    Article  CAS  PubMed  Google Scholar 

  39. Kumar KJ, Vani MG, Wang SY, Liao JW, Hsu LS, Yang HL et al (2013) In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 39:259–270

    Article  CAS  PubMed  Google Scholar 

  40. Swope VB, Jameson JA, McFarland KL, Supp DM, Miller WE, McGraw DW et al (2012) Defining MC1R regulation in human melanocytes by its agonist α-melanocortin and antagonists agouti signaling protein and β-defensin 3. J Invest Dermatol 132:2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rouzaud F, Annereau JP, Valencia JC, Costin GE, Hearing VJ (2003) Regulation of melanocortin 1 receptor expression at the mRNA and protein levels by its natural agonist and antagonist. FESEB J 17:2154–2156

    CAS  Google Scholar 

  42. Garcia-Borron JC, Abdel-Malek Z, Jimenez-Cervantes C (2014) MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res 27:699–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su TR, Lin JJ, Tsai CC, Huang TK, Yang ZY, Wu MO et al (2013) Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 14:20443–20458

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liang CH, Chou TH, Tseng YP, Ding HY (2012) trans-Caffeic acid stearyl ester from Paeonia suffruticosa inhibits melanin synthesis by cAMP-mediating down-regulation of α-melanocyte-stimulating hormone-stimulated melanogenesis signaling pathway in B16 cells. Biol Pharm Bull 35:21198–22203

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science KAKENHI Grant Number 25740018. We are grateful to Hiroaki Nishihira for his technical assistance in this study.

Author contributions

K. S designed the experiments; K. S, R. A, H. K, and T. N performed the experiments; K. S, R. A, and H. K analyzed the data; K. S wrote this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuomi Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Ando, R., Kobayashi, H. et al. 2-Ethoxybenzamide stimulates melanin synthesis in B16F1 melanoma cells via the CREB signaling pathway. Mol Cell Biochem 423, 39–52 (2016). https://doi.org/10.1007/s11010-016-2823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2823-x

Keywords

Navigation