Skip to main content
Log in

The role of T-LAK cell-originated protein kinase in targeted cancer therapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Abe Y et al (2000) Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. J Biol Chem 275(28):21525–21531

    CAS  PubMed  Google Scholar 

  2. Gaudet S, Branton D, Lue RA (2000) Characterization of PDZ-binding kinase, a mitotic kinase. Proc Natl Acad Sci U S A 97(10):5167–5172

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu F et al (2007) Bidirectional signals transduced by TOPK-ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Gastroenterology 133(1):219–231

    CAS  PubMed  Google Scholar 

  4. Zykova TA et al (2006) Lymphokine-activated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI7951 melanoma cells. Clin Cancer Res 12(23):6884–6893

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Park JH et al (2006) PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 66(18):9186–9195

    CAS  PubMed  Google Scholar 

  6. Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2(3):195–209

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roskoski R Jr (2012) MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun 417(1):5–10

    CAS  PubMed  Google Scholar 

  8. Zheng CF, Guan KL (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13(5):1123–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mansour SJ et al (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265(5174):966–970

    CAS  PubMed  Google Scholar 

  10. Daouti S et al (2009) Characterization of a novel mitogen-activated protein kinase kinase 1/2 inhibitor with a unique mechanism of action for cancer therapy. Cancer Res 69(5):1924–1932

    CAS  PubMed  Google Scholar 

  11. Eblen ST et al (2004) Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol 24(6):2308–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Catalanotti F et al (2009) A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 16(3):294–303

    CAS  PubMed  Google Scholar 

  13. Ritt DA et al (2010) Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol 30(3):806–819

    CAS  PubMed  Google Scholar 

  14. Neuzillet C et al (2014) MEK in cancer and cancer therapy. Pharmacol Ther 141(2):160–171

    CAS  PubMed  Google Scholar 

  15. Nandi A et al (2004) Protein expression of PDZ-binding kinase is up-regulated in hematologic malignancies and strongly down-regulated during terminal differentiation of HL-60 leukemic cells. Blood Cells Mol Dis 32(1):240–245

    CAS  PubMed  Google Scholar 

  16. Dou X et al (2015) PBK/TOPK mediates geranylgeranylation signaling for breast cancer cell proliferation. Cancer Cell Int 15:27

    PubMed  PubMed Central  Google Scholar 

  17. Luo Q et al (2014) Expression of PBK/TOPK in cervical cancer and cervical intraepithelial neoplasia. Int J Clin Exp Pathol 7(11):8059–8064

    PubMed  PubMed Central  Google Scholar 

  18. Simons-Evelyn M et al (2001) PBK/TOPK is a novel mitotic kinase which is upregulated in Burkitt’s lymphoma and other highly proliferative malignant cells. Blood Cells Mol Dis 27(5):825–829

    CAS  PubMed  Google Scholar 

  19. Shih MC et al (2012) TOPK/PBK promotes cell migration via modulation of the PI3K/PTEN/AKT pathway and is associated with poor prognosis in lung cancer. Oncogene 31(19):2389–2400

    CAS  PubMed  Google Scholar 

  20. Ayllon V, O’Connor R (2007) PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene 26(24):3451–3461

    CAS  PubMed  Google Scholar 

  21. Hu F et al (2010) PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21. Oncogene 29(40):5464–5474

    CAS  PubMed  Google Scholar 

  22. Aksamitiene E et al (2010) PI3K/Akt-sensitive MEK-independent compensatory circuit of ERK activation in ER-positive PI3K-mutant T47D breast cancer cells. Cell Signal 22(9):1369–1378

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun H et al (2015) TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer. Oncotarget 6(14):12392–12404

    PubMed  PubMed Central  Google Scholar 

  24. Zykova TA et al (2017) The T-LAK cell-originated protein kinase signal pathway promotes colorectal cancer metastasis. EBioMedicine 18:73–82

    PubMed  PubMed Central  Google Scholar 

  25. Brown-Clay JD et al (2015) PBK/TOPK enhances aggressive phenotype in prostate cancer via beta-catenin-TCF/LEF-mediated matrix metalloproteinases production and invasion. Oncotarget 6(17):15594–15609

    PubMed  PubMed Central  Google Scholar 

  26. Seol MA et al (2017) Role of TOPK in lipopolysaccharide-induced breast cancer cell migration and invasion. Oncotarget 8(25):40190–40203

    PubMed  PubMed Central  Google Scholar 

  27. Lee YJ, Park JH, Oh SM (2020) TOPK promotes epithelial-mesenchymal transition and invasion of breast cancer cells through upregulation of TBX3 in TGF-beta1/Smad signaling. Biochem Biophys Res Commun 522(1):270–277

    CAS  PubMed  Google Scholar 

  28. Jiang Y et al (2019) TOPK promotes metastasis of esophageal squamous cell carcinoma by activating the Src/GSK3beta/STAT3 signaling pathway via gamma-catenin. BMC Cancer 19(1):1264

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y et al (2016) TOPK promotes lung cancer resistance to EGFR tyrosine kinase inhibitors by phosphorylating and activating c-Jun. Oncotarget 7(6):6748–6764

    PubMed  PubMed Central  Google Scholar 

  30. Xiao J et al (2019) Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells. Cell Death Dis 10(10):777

    PubMed  PubMed Central  Google Scholar 

  31. Park JH et al (2013) Phosphorylation of IkappaBalpha at serine 32 by T-lymphokine-activated killer cell-originated protein kinase is essential for chemoresistance against doxorubicin in cervical cancer cells. J Biol Chem 288(5):3585–3593

    CAS  PubMed  Google Scholar 

  32. Lu H et al (2019) TOPK inhibits autophagy by phosphorylating ULK1 and promotes glioma resistance to TMZ. Cell Death Dis 10(8):583

    PubMed  PubMed Central  Google Scholar 

  33. Cao H et al (2021) PBK/TOPK promotes chemoresistance to oxaliplatin in hepatocellular carcinoma cells by regulating PTEN. Acta Biochim Biophys Sin (Shanghai) 53(5):584–592

    CAS  Google Scholar 

  34. Jacobsen MM et al (2017) Timeliness of access to lung cancer diagnosis and treatment: a scoping literature review. Lung Cancer 112:156–164

    PubMed  Google Scholar 

  35. Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A (2015) Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol 21(26):7933–7943

    PubMed  PubMed Central  Google Scholar 

  36. Ferguson JL, Turner SP (2018) Bone cancer: diagnosis and treatment principles. Am Fam Physician 98(4):205–213

    PubMed  Google Scholar 

  37. Ott JJ, Ullrich A, Miller AB (2009) The importance of early symptom recognition in the context of early detection and cancer survival. Eur J Cancer 45(16):2743–2748

    CAS  PubMed  Google Scholar 

  38. Neal RD et al (2015) Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br J Cancer 112(Suppl 1):S92-107

    PubMed  PubMed Central  Google Scholar 

  39. Zlobec I et al (2010) Prognostic and predictive value of TOPK stratified by KRAS and BRAF gene alterations in sporadic, hereditary and metastatic colorectal cancer patients. Br J Cancer 102(1):151–161

    CAS  PubMed  Google Scholar 

  40. Ikeda Y et al (2016) T-LAK cell-originated protein kinase (TOPK) as a prognostic factor and a potential therapeutic target in ovarian cancer. Clin Cancer Res 22(24):6110–6117

    CAS  PubMed  Google Scholar 

  41. Hayashi T et al (2018) Impact of a novel biomarker, T-LAK cell-originating protein kinase (TOPK) expression on outcome in malignant glioma. Neuropathology 38(2):144–153

    CAS  PubMed  Google Scholar 

  42. Ohashi T et al (2017) Overexpression of PBK/TOPK relates to tumour malignant potential and poor outcome of gastric carcinoma. Br J Cancer 116(2):218–226

    CAS  PubMed  Google Scholar 

  43. Ohashi T et al (2016) Overexpression of PBK/TOPK contributes to tumor development and poor outcome of esophageal squamous cell carcinoma. Anticancer Res 36(12):6457–6466

    CAS  PubMed  Google Scholar 

  44. Xu M, Xu S (2019) PBK/TOPK overexpression and survival in solid tumors: a PRISMA-compliant meta-analysis. Medicine (Baltimore) 98(10):14766

    Google Scholar 

  45. Zhang Y et al (2019) Prognostic value of PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) in patients with cancer. J Cancer 10(1):131–137

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei DC et al (2012) Overexpression of T-LAK cell-originated protein kinase predicts poor prognosis in patients with stage I lung adenocarcinoma. Cancer Sci 103(4):731–738

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang CF et al (2016) PBK/TOPK expression predicts prognosis in oral cancer. Int J Mol Sci 17(7):1007

    PubMed Central  Google Scholar 

  48. He F et al (2010) PBK/TOPK in the differential diagnosis of cholangiocarcinoma from hepatocellular carcinoma and its involvement in prognosis of human cholangiocarcinoma. Hum Pathol 41(3):415–424

    CAS  PubMed  Google Scholar 

  49. Uchida E et al (2019) TOPK is regulated by PP2A and BCR/ABL in leukemia and enhances cell proliferation. Int J Oncol 54(5):1785–1796

    CAS  PubMed  Google Scholar 

  50. Liu Y et al (2015) PBK/TOPK mediates promyelocyte proliferation via Nrf2-regulated cell cycle progression and apoptosis. Oncol Rep 34(6):3288–3296

    CAS  PubMed  Google Scholar 

  51. Lei B et al (2015) PBK/TOPK expression correlates with mutant p53 and affects patients’ prognosis and cell proliferation and viability in lung adenocarcinoma. Hum Pathol 46(2):217–224

    CAS  PubMed  Google Scholar 

  52. Diao X et al (2019) Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase. Biosci Rep 39(4):BSR20181692

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Park JH et al (2017) TOPK (T-LAK cell-originated protein kinase) inhibitor exhibits growth suppressive effect on small cell lung cancer. Cancer Sci 108(3):488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zou L et al (2019) Sulfasalazine suppresses thyroid cancer cell proliferation and metastasis through T-cell originated protein kinase. Oncol Lett 18(4):3517–3526

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thanindratarn P et al (2020) T-LAK cell-originated protein kinase (TOPK) is a novel prognostic and therapeutic target in chordoma. Cell Prolif 53(10):12901

    Google Scholar 

  56. Gao T et al (2019) Novel selective TOPK inhibitor SKLB-C05 inhibits colorectal carcinoma growth and metastasis. Cancer Lett 445:11–23

    CAS  PubMed  Google Scholar 

  57. Wang L et al (2019) Cyanidin-3-O-glucoside inhibits proliferation of colorectal cancer cells by targeting TOPK. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 35(12):1101–1108

    PubMed  Google Scholar 

  58. Zhao R et al (2020) Acetylshikonin suppressed growth of colorectal tumour tissue and cells by inhibiting the intracellular kinase, T-lymphokine-activated killer cell-originated protein kinase. Br J Pharmacol 177(10):2303–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim DJ et al (2012) Novel TOPK inhibitor HI-TOPK-032 effectively suppresses colon cancer growth. Cancer Res 72(12):3060–3068

    CAS  PubMed  Google Scholar 

  60. Kato T et al (2016) Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells. Oncotarget 7(14):17652–17664

    PubMed  PubMed Central  Google Scholar 

  61. Ishikawa C, Senba M, Mori N (2018) Mitotic kinase PBK/TOPK as a therapeutic target for adult Tcell leukemia/lymphoma. Int J Oncol 53(2):801–814

    CAS  PubMed  Google Scholar 

  62. Roh E et al (2020) Suppression of the solar ultraviolet-induced skin carcinogenesis by TOPK inhibitor HI-TOPK-032. Oncogene 39(21):4170–4182

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Joel M et al (2015) Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo. Mol Cancer 14:121

    PubMed  PubMed Central  Google Scholar 

  64. Mu X et al (2021) Scutellarin suppresses RPMI7951 melanoma cell proliferation by targeting TOPK. Anticancer Agents Med Chem 21(5):640–648

    CAS  PubMed  Google Scholar 

  65. Thanindratarn P et al (2021) T-LAK cell-originated protein kinase (TOPK): an emerging prognostic biomarker and therapeutic target in osteosarcoma. Mol Oncol 15:3721–3737

    PubMed  PubMed Central  Google Scholar 

  66. Chen F et al (2013) T-LAK cell-originated protein kinase is essential for the proliferation of hepatocellular carcinoma SMMC-7721 cells. Cell Biochem Funct 31(8):736–742

    CAS  PubMed  Google Scholar 

  67. Wang MY et al (2016) PDZ binding kinase (PBK) is a theranostic target for nasopharyngeal carcinoma: driving tumor growth via ROS signaling and correlating with patient survival. Oncotarget 7(18):26604–26616

    PubMed  PubMed Central  Google Scholar 

  68. Kwon HR et al (2010) Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells. Biochem Biophys Res Commun 391(1):830–834

    CAS  PubMed  Google Scholar 

  69. Matsumoto S et al (2004) Characterization of a MAPKK-like protein kinase TOPK. Biochem Biophys Res Commun 325(3):997–1004

    CAS  PubMed  Google Scholar 

  70. Abe Y et al (2007) A mitotic kinase TOPK enhances Cdk1/cyclin B1-dependent phosphorylation of PRC1 and promotes cytokinesis. J Mol Biol 370(2):231–245

    CAS  PubMed  Google Scholar 

  71. Xiao J et al (2016) Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget 7(17):24483–24494

    PubMed  PubMed Central  Google Scholar 

  72. Li S et al (2011) T-LAK cell-originated protein kinase (TOPK) phosphorylation of MKP1 protein prevents solar ultraviolet light-induced inflammation through inhibition of the p38 protein signaling pathway. J Biol Chem 286(34):29601–29609

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Roh E et al (2018) Targeting PRPK and TOPK for skin cancer prevention and therapy. Oncogene 37(42):5633–5647

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zykova TA et al (2010) T-LAK cell-originated protein kinase (TOPK) phosphorylation of Prx1 at Ser-32 prevents UVB-induced apoptosis in RPMI7951 melanoma cells through the regulation of Prx1 peroxidase activity. J Biol Chem 285(38):29138–29146

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao R et al (2019) Cell growth inhibition by 3-deoxysappanchalcone is mediated by directly targeting the TOPK signaling pathway in colon cancer. Phytomedicine 61:152813

    CAS  PubMed  Google Scholar 

  76. Zeng X et al (2016) Pantoprazole, an FDA-approved proton-pump inhibitor, suppresses colorectal cancer growth by targeting T-cell-originated protein kinase. Oncotarget 7(16):22460–22473

    PubMed  PubMed Central  Google Scholar 

  77. Zheng M et al (2017) Proton pump inhibitor ilaprazole suppresses cancer growth by targeting T-cell-originated protein kinase. Oncotarget 8(24):39143–39153

    PubMed  PubMed Central  Google Scholar 

  78. Vishchuk OS et al (2016) PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth. Oncotarget 7(14):18763–18773

    PubMed  PubMed Central  Google Scholar 

  79. Kang NJ et al (2011) Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis 32(6):921–928

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang J et al (2016) Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 40(4):400–408

    PubMed  PubMed Central  Google Scholar 

  81. Gao G et al (2017) ADA-07 suppresses solar ultraviolet-induced skin carcinogenesis by directly inhibiting TOPK. Mol Cancer Ther 16(9):1843–1854

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fan X et al (2016) Cefradine blocks solar-ultraviolet induced skin inflammation through direct inhibition of T-LAK cell-originated protein kinase. Oncotarget 7(17):24633–24645

    PubMed  PubMed Central  Google Scholar 

  83. Xue P et al (2017) Paeonol suppresses solar ultraviolet-induced skin inflammation by targeting T-LAK cell-originated protein kinase. Oncotarget 8(16):27093–27104

    PubMed  PubMed Central  Google Scholar 

  84. Fan X et al (2019) Eupafolin suppresses esophagus cancer growth by targeting T-LAK cell-originated protein kinase. Front Pharmacol 10:1248

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang E et al (2018) Glycycoumarin sensitizes liver cancer cells to ABT-737 by targeting De Novo lipogenesis and TOPK-survivin axis. Nutrients. https://doi.org/10.3390/nu10030353

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yuryev A, Wennogle LP (2003) Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis. Genomics 81(2):112–125

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Numbers 81902849, 81972762, 81672936 and 81672739), and the Hubei Province Health and Family Planning Scientific Research Project (Numbers WJ2019M109) and Guangxi Science and Technology Planning Project (Number: Guike AD20297047)

Author information

Authors and Affiliations

Authors

Contributions

FZ supervised the conception of the work. QD, FW, HY, SE, OM, and JM, YH critically revised the manuscript. LZ and JX wrote the manuscript.

Corresponding authors

Correspondence to Qiuhong Duan, Juanjuan Xiao or Feng Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, F., Yi, H. et al. The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 477, 759–769 (2022). https://doi.org/10.1007/s11010-021-04329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04329-5

Keywords

Navigation