Skip to main content

Advertisement

Log in

MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Triple-Negative Breast Cancer (TNBC) is one of the most aggressive and hot BC subtypes. Our research group has recently shed the light on the utility of natural compounds as effective immunotherapeutic agents. The aim of this study is to investigate the role of a methoxylated quercetin glycoside (MQG) isolated from Cleome droserifolia in harnessing TNBC progression and tuning the tumor microenvironment and natural killer cells cytotoxicity. Results showed that MQG showed the highest potency (IC50 = 12 µM) in repressing cellular proliferation, colony-forming ability, migration, and invasion capacities. Mechanistically, MQG was found to modulate a circuit of competing endogenous RNAs where it was found to reduce the oncogenic MALAT-1 lncRNA and induce TP53 and its downstream miRNAs; miR-155 and miR-146a. Accordingly, this leads to alteration in several downstream signaling pathways such as nitric oxide synthesizing machinery, natural killer cells' cytotoxicity through inducing the expression of its activating ligands such as MICA/B, ULBP2, CD155, and ICAM-1 and trimming of the immune-suppressive cytokines such as TNF-α and IL-10. In conclusion, this study shows that MQG act as a compelling anti-cancer agent repressing TNBC hallmarks, activating immune cell recognition, and alleviating the immune-suppressive tumor microenvironment experienced by TNBC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available from the corresponding author based on a reasonable request.

Abbreviations

BC:

Breast cancer

CD155:

Cluster of differentiation 155

IL-10:

Interleukin-10

ICAM-1:

Intracellular adhesion molecule-1

MICA:

MHC class I-related chain A

MICB:

MHC class I-related chain B

miRNA/miR:

MicroRNA

NK cells:

Natural Killer cells

TNBC:

Triple negative breast cancer

TNF-α:

Tumor necrosis factor-alpha

ULBP2:

UL-16 binding protein

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. O’Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, Foulkes WD, Dressler LG, Geradts J, Millikan RC (2010) Intrinsic breast tumor subtypes, race, and long-term survival in the carolina breast cancer study. Clin Cancer Res 16:6100–6110. https://doi.org/10.1158/1078-0432.Ccr-10-1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Youness RA, Gad AZ, Sanber K, Ahn YJ, Lee GJ, Khallaf E, Hafez HM, Motaal AA, Ahmed N, Gad MZ (2021) Targeting hydrogen sulphide signaling in breast cancer. J Adv Res 27:177–190. https://doi.org/10.1016/j.jare.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434. https://doi.org/10.1158/1078-0432.CCR-06-3045

    Article  PubMed  Google Scholar 

  5. Youness RA, Hafez HM, Khallaf E, Assal RA, Abdel Motaal A, Gad MZ (2019) The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol 234:20286–20297. https://doi.org/10.1002/jcp.28629

    Article  CAS  PubMed  Google Scholar 

  6. El-Layeh RA, Youness RA, Askary H, Abdelmotaal A, Assal RA (2019) 36PStructural diversity of the cardenolide calotropin renders it as a targeted therapy for harnessing TNBC progression through tuning nitric oxide (NO) levels. Ann Oncol. https://doi.org/10.1093/annonc/mdz026.007

    Article  Google Scholar 

  7. Katz H, Alsharedi M (2017) Immunotherapy in triple-negative breast cancer. Med Oncol 35:13. https://doi.org/10.1007/s12032-017-1071-6

    Article  CAS  PubMed  Google Scholar 

  8. Beck K, Blansfield J, Tran K, Feldman A, Hughes M, Royal R, Kammula U, Topalian S, Sherry R, Kleiner D, Quezado M, Lowy I, Yellin M, Rosenberg S, Yang JC (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte–associated antigen 4. J Clin Oncol 24:1–16

    Article  Google Scholar 

  9. van der Vlist M, Kuball J, Radstake TR, Meyaard L (2016) Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat Rev Rheumatol 12:593–604. https://doi.org/10.1038/nrrheum.2016.131

    Article  CAS  PubMed  Google Scholar 

  10. Abdel-Latif M, Youness RA (2020) Why natural killer cells in triple negative breast cancer? World J Clin Oncol 11:464–476. https://doi.org/10.5306/wjco.v11.i7.464

    Article  PubMed  PubMed Central  Google Scholar 

  11. Awad AR, Youness RA, Ibrahim M, Motaal AA, El-Askary HI, Assal RA, Gad MZ (2019) An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR- 20a-MICA/B axis. Nat Product Res. https://doi.org/10.1080/14786419.2019.1686372

    Article  Google Scholar 

  12. El-Layeh RA, Youness RA, Askary H, Abdelmotaal A, Assal RA (2019) Structural diversity of the cardenolide calotropin renders it as a targeted therapy for harnessing TNBC progression through tuning nitric oxide (NO) levels. Ann Oncol 30(Suppl 1):i14. https://doi.org/10.1093/annonc/mdz026.007

    Article  Google Scholar 

  13. Elkhouly A, Youness R, Abdelmotaal A, Gad M (2020) miR-486-5p and miR-17-5p: novel immunomodulatory non-coding RNAs drawn downstream 3′-O-acetylvitexin in triple negative breast cancer. Eur J Cancer 138:S70. https://doi.org/10.1016/S0959-8049(20)30715-2

    Article  Google Scholar 

  14. Awad AR, Youness RA, Ibrahim M, Motaal AA, El-Askary HI, Assal RA, Gad MZ (2021) An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR- 20a-MICA/B axis. Nat Prod Res 35:3126–3130. https://doi.org/10.1080/14786419.2019.1686372

    Article  CAS  PubMed  Google Scholar 

  15. Shaalan YM, Handoussa H, Youness RA, Assal RA, El-Khatib AH, Linscheid MW, El TayebiAbdelaziz HMAI (2018) Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat Prod Res 32:2217–2220. https://doi.org/10.1080/14786419.2017.1366478

    Article  CAS  PubMed  Google Scholar 

  16. Abdallah RM, Elkhouly AM, Soliman RA, El Meckawy N, El Sebaei A, Motaal AA, El-Askary H, Youness RA, Assal RA (2021) Hindering The synchronization between Mir-486-5p and H19 Lncrna By hesperetin halts breast cancer aggressiveness through tuning ICAM-1. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520621666210419093652

    Article  Google Scholar 

  17. Ezzat SM, Abdel Motaal A (2012) Isolation of new cytotoxic metabolites from Cleome droserifolia growing in Egypt. Z Nat 67:266–274

    CAS  Google Scholar 

  18. Youness RA, Assal RA, Ezzat SM, Gad MZ, Abdel Motaal A (2018) A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1509326

    Article  PubMed  Google Scholar 

  19. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36. https://doi.org/10.1093/carcin/bgp220

    Article  CAS  PubMed  Google Scholar 

  20. Nafea H, Youness RA, Abou-Aisha K, Gad MZ (2021) LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J Cell Physiol 236:5362–5372. https://doi.org/10.1002/jcp.30234

    Article  CAS  PubMed  Google Scholar 

  21. Youness RA, Gad MZ (2019) Long non-coding RNAs: Functional regulatory players in breast cancer. Noncoding RNA Res 4:36–44. https://doi.org/10.1016/j.ncrna.2019.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. ElKhouly AM, Youness RA, Gad MZ (2020) MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res 5:11–21. https://doi.org/10.1016/j.ncrna.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Selem NA, Youness RA, Gad MZ (2021) What is beyond LncRNAs in breast cancer: a special focus on colon cancer-associated Transcript-1 (CCAT-1). Noncoding RNA Res 6:174–186. https://doi.org/10.1016/j.ncrna.2021.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soliman R-A, Youness R-A, Manie T-M, Khallaf E, El-Shazly M, Abdelmohsen M, Handoussa H, Gad M-Z (2022) Uncoupling tumor necrosis factor-α and interleukin-10 at tumor immune microenvironment of breast cancer through miR-17-5p/MALAT-1/H19 circuit. Biocell 46:769–783

    Article  Google Scholar 

  25. Abdi J, Rastgoo N, Li LH, Chen WM, Chang H (2017) Role of tumor suppressor p53 and micro-RNA interplay in multiple myeloma pathogenesis. J Hematol Oncol. https://doi.org/10.1186/s13045-017-0538-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hattori H, Janky R, Nietfeld W, Aerts S, Babu MM, Venkitaraman AR (2014) p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response. Cell Cycle 13:2572–2586. https://doi.org/10.4161/15384101.2015.942209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sandhu R, Rein J, D’Arcy M, Herschkowitz JI, Hoadley KA, Troester MA (2014) Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis 35:2567–2575. https://doi.org/10.1093/carcin/bgu175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El KilanyYouness FHRA, Assal RA, Gad MZ (2021) miR-744/eNOS/NO axis: a novel target to halt triple negative breast cancer progression. Breast Dis 40:161–169. https://doi.org/10.3233/bd-200454

    Article  Google Scholar 

  29. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. BBA-Mol Basis Dis 1792:497–505. https://doi.org/10.1016/j.bbadis.2009.02.013

    Article  CAS  Google Scholar 

  30. Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y, Yu J (2018) Regulation of Human Natural Killer Cell IFN-γ Production by MicroRNA-146a via Targeting the NF-κB Signaling Pathway. Front Immunol 9:293. https://doi.org/10.3389/fimmu.2018.00293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hargreaves BKV, Roberts SE, Derfalvi B, Boudreau JE (2020) Highly efficient serum-free manipulation of miRNA in human NK cells without loss of viability or phenotypic alterations is accomplished with TransIT-TKO. PLoS ONE 15(4):e0231664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Youness RA, Assal RA, Abdel Motaal A, Gad MZ (2018) A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide 80:12–23. https://doi.org/10.1016/j.niox.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  33. Youness RA, Rahmoon MA, Assal RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI (2016) Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 34:128–140. https://doi.org/10.1080/08977194.2016.1200571

    Article  CAS  PubMed  Google Scholar 

  34. Mekky RY, El-Ekiaby N, El Sobky SA, Elemam NM, Youness RA, El-Sayed M, Hamza MT, Esmat G, Abdelaziz AI (2019) Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models. Arch Virol 164:1587–1595. https://doi.org/10.1007/s00705-019-04232-x

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed Youness R, Amr Assal R, Mohamed Ezzat S, Zakaria Gad M, Abdel Motaal A (2020) A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res 34:1475–1480. https://doi.org/10.1080/14786419.2018.1509326

    Article  CAS  PubMed  Google Scholar 

  36. Youness RA, El-Tayebi HM, Assal RA, Hosny K, Esmat G, Abdelaziz AI (2016) MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc. Oncol Lett 12:2567–2573. https://doi.org/10.3892/ol.2016.4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Youssef SS, Abbas E, Youness RA, Elemeery MN, Nasr AS, Seif S (2019) PNPLA3 and IL 28B signature for predicting susceptibility to chronic hepatitis C infection and fibrosis progression. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2019.1694039

    Article  PubMed  Google Scholar 

  38. El DinYouness GSRA, Assal RA, Gad MZ (2020) miRNA-506-3p directly regulates rs10754339 (A/G) in the immune checkpoint protein B7–H4 in breast cancer. Microrna 9:346–353. https://doi.org/10.2174/2211536609666201209152949

    Article  CAS  Google Scholar 

  39. Rahmoon MA, Youness RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI (2017) MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors 35:76–87. https://doi.org/10.1080/08977194.2017.1354859

    Article  CAS  PubMed  Google Scholar 

  40. Zhang T, Wang H, Li Q, Fu J, Huang J, Zhao Y (2018) MALAT1 Activates the P53 signaling pathway by regulating MDM2 to promote ischemic stroke. Cell Physiol Biochem 50:2216–2228. https://doi.org/10.1159/000495083

    Article  CAS  PubMed  Google Scholar 

  41. Nour AM, Khalid SA, Kaiser M, Brun R, Abdalla WE, Schmidt TJ (2010) The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J Ethnopharmacol 129:127–130. https://doi.org/10.1016/j.jep.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  42. Begum S, Wahab A, Siddiqui BS (2008) Antimycobacterial activity of flavonoids from Lantana camara Linn. Nat Prod Res 22:467–470. https://doi.org/10.1080/14786410600898714

    Article  CAS  PubMed  Google Scholar 

  43. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165. https://doi.org/10.1038/sj.onc.1210302

    Article  CAS  PubMed  Google Scholar 

  44. Horigome E, Fujieda M, Handa T, Katayama A, Ito M, Ichihara A, Tanaka D, Gombodorj N, Yoshiyama S, Yamane A, Yamada K, Horiguchi J, Shinozuka K, Oyama T, Nishiyama M, Rokudai S (2018) Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 9:34554–34566. https://doi.org/10.18632/oncotarget.26177

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li JP, Zhang XM, Zhang Z, Zheng LH, Jindal S, Liu YJ (2019) Association of p53 expression with poor prognosis in patients with triple-negative breast invasive ductal carcinoma. Medicine (Baltimore) 98:e15449. https://doi.org/10.1097/md.0000000000015449

    Article  CAS  Google Scholar 

  46. Grespi F, Landré V, Molchadsky A, Di Daniele N, Marsella LT, Melino G, Rotter V (2016) Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells. Cell Death Dis 7:e2567–e2567. https://doi.org/10.1038/cddis.2016.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dai R, Phillips RA, Zhang Y, Khan D, Crasta O, Ahmed SA (2008) Suppression of LPS-induced Interferon-γ and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood 112:4591–4597. https://doi.org/10.1182/blood-2008-04-152488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu C, Ren G, Cao G, Chen Q, Shou P, Zheng C, Du L, Han X, Jiang M, Yang Q, Lin L, Wang G, Yu P, Zhang X, Cao W, Brewer G, Wang Y, Shi Y (2013) miR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2. J Biol Chem 288:11074–11079. https://doi.org/10.1074/jbc.M112.414862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jadeski LC, Chakraborty C, Lala PK (2002) Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Can J Physiol Pharmacol 80:125–135. https://doi.org/10.1139/y02-007

    Article  CAS  PubMed  Google Scholar 

  50. Walsh EM, Keane MM, Wink DA, Callagy G, Glynn SA (2016) Review of triple negative breast cancer and the impact of inducible nitric oxide synthase on tumor biology and patient outcomes. Crit Rev Oncog 21:333–351. https://doi.org/10.1615/CritRevOncog.2017021307

    Article  PubMed  PubMed Central  Google Scholar 

  51. Garrido P, Shalaby A, Walsh EM, Keane N, Webber M, Keane MM, Sullivan FJ, Kerin MJ, Callagy G, Ryan AE, Glynn SA (2017) Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget 8:80568–80588. https://doi.org/10.18632/oncotarget.19631

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI, Blazar BR, Zeng Y, Zhou X (2011) miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117:4293–4303. https://doi.org/10.1182/blood-2010-12-322503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cerutti C, Soblechero-Martin P, Wu D, Lopez-Ramirez MA, de Vries H, Sharrack B, Male DK, Romero IA (2016) MicroRNA-155 contributes to shear-resistant leukocyte adhesion to human brain endothelium in vitro. Fluids Barri CNS 13:8. https://doi.org/10.1186/s12987-016-0032-3

    Article  CAS  Google Scholar 

  54. Abdel-Latif M, Afifi A, Soliman R, Elkhouly A, Abdelmotaal A, Youness RA (2019) 23P-A new quercetin glycoside enhances TNBC immunological profile through TP53/miR-155/MICA/ULBP2. Ann Oncol 30:7–8. https://doi.org/10.1093/annonc/mdz413.028

    Article  Google Scholar 

  55. de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA, Jafferji I, Trowsdale J, Liefers GJ, van de Velde CJ, Kuppen PJ (2012) NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer 12:24. https://doi.org/10.1186/1471-2407-12-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Llanes-Fernández L, Alvarez-Goyanes RI, Arango-Prado Mdel C, Alcocer-González JM, Mojarrieta JC, Pérez XE, López MO, Odio SF, Camacho-Rodríguez R, Guerra-Yi ME, Madrid-Marina V, Tamez-Guerra R, Rodríguez-Padilla C (2006) Relationship between IL-10 and tumor markers in breast cancer patients. Breast 15:482–489. https://doi.org/10.1016/j.breast.2005.09.012

    Article  PubMed  Google Scholar 

  57. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, Laune D, Roques S, Lazennec G (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 9:R15. https://doi.org/10.1186/bcr1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16. https://doi.org/10.1038/bjc.2017.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O’Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ (2017) Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 52:71–81. https://doi.org/10.1016/j.ctrv.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  60. Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, Royal RE, Kammula US, Hughes MS, Allen TE, Levy CL, Yellin M, Nichol G, White DE, Steinberg SM, Rosenberg SA (2007) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res 13:6681–6688. https://doi.org/10.1158/1078-0432.Ccr-07-0187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M (2009) Onco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295. https://doi.org/10.1002/emmm.200900028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF alpha) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444. https://doi.org/10.1074/jbc.M110.145870

    Article  CAS  PubMed  Google Scholar 

  63. Pileczki V, Braicu C, Gherman CD, Berindan-Neagoe I (2012) TNF-α gene knockout in triple negative breast cancer cell line induces apoptosis. Int J Mol Sci 14:411–420. https://doi.org/10.3390/ijms14010411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu J, Wang F-L, Wang H-B, Dong N, Zhu X-M, Wu Y, Wang Y-T, Yao Y-M (2017) TNF-α mRNA is negatively regulated by microRNA-181a-5p in maturation of dendritic cells induced by high mobility group box-1 protein. Sci Rep 7:12239. https://doi.org/10.1038/s41598-017-12492-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu TT, Zhang WF, Yin YL, Liu YH, Song P, Xu J, Zhang MX, Li P (2019) MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension. J Cell Physiol 234:9535–9550. https://doi.org/10.1002/jcp.27642

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

MA-L and RAY contributed to most of the practical work and wrote the manuscript. AR, RS, AE-K, HN contributed to the practical work. MZG, AM co-supervised the work. RAY conceived the original idea, designed the experimental setup, supervised the work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Rana A. Youness.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This study complies with all Ethical Standards. The current study does not include any human participants or animals so informed consents are not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Latif, M., Riad, A., Soliman, R.A. et al. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol Cell Biochem 477, 1281–1293 (2022). https://doi.org/10.1007/s11010-022-04378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04378-4

Keywords

Navigation