Skip to main content
Log in

Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CRC is the third most common cancer occurring worldwide and the second leading cause of cancer deaths. In the year 2020, 1,931,590 new cases of CRC and 935,173 deaths were reported. The last two decades have witnessed an intensive study of noncoding RNAs and their implications in various pathological conditions including cancer. Noncoding RNAs such as miRNAs, tsRNAs, piRNAs, lncRNAs, pseudogenes, and circRNAs have emerged as promising prognostic and diagnostic biomarkers in preclinical studies of cancer. Some of these noncoding RNAs have also been shown as promising therapeutic targets for cancer treatment. In this review, we have discussed the emerging roles of various types of noncoding RNAs in CRC and their future implications in colorectal cancer management and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Arnold M, Sierra MS, Laversanne M et al (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683–691. https://doi.org/10.1136/gutjnl-2015-310912

    Article  PubMed  Google Scholar 

  2. Dozois EJ, Boardman LA, Suwanthanma W et al (2008) Young-onset colorectal cancer in patients with no known genetic predisposition: can we increase early recognition and improve outcome? Medicine (Baltimore) 87:259–263. https://doi.org/10.1097/MD.0b013e3181881354

    Article  Google Scholar 

  3. Arnold M, Soerjomataram I, Ferlay J, Forman D (2015) Global incidence of oesophageal cancer by histological subtype in 2012. Gut 64:381–387. https://doi.org/10.1136/gutjnl-2014-308124

    Article  PubMed  Google Scholar 

  4. Schatoff EM, Leach BI, Dow LE (2017) Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep 13:101–110. https://doi.org/10.1007/s11888-017-0354-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Loboda A, Nebozhyn MV, Watters JW et al (2011) EMT is the dominant program in human colon cancer. BMC Med Genomics 4:9. https://doi.org/10.1186/1755-8794-4-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kishore C (2021) Epigenetic regulation and promising therapies in colorectal cancer. Curr Mol Pharmacol 14:5. https://doi.org/10.2174/1874467214666210126105345

    Article  Google Scholar 

  7. Kishore C, Sundaram S, Karunagaran D (2019) Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem Biol Interact 309:108725. https://doi.org/10.1016/j.cbi.2019.108725

    Article  CAS  PubMed  Google Scholar 

  8. Kishore C, Bhadra P (2021) Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol 893:173819. https://doi.org/10.1016/j.ejphar.2020.173819

    Article  CAS  PubMed  Google Scholar 

  9. Deng X, Su R, Weng H et al (2018) RNA N 6 -methyladenosine modification in cancers: current status and perspectives. Cell Res 28:507–517. https://doi.org/10.1038/s41422-018-0034-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. https://doi.org/10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  11. Slack FJ, Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. Cell 179:1033–1055. https://doi.org/10.1016/j.cell.2019.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacFarlane L-A, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561. https://doi.org/10.2174/138920210793175895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  14. Yu X, Xie Y, Zhang S et al (2021) tRNA-derived fragments: mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Theranostics 11:461–469. https://doi.org/10.7150/thno.51963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu M, Lu B, Zhang J et al (2020) tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 13:121. https://doi.org/10.1186/s13045-020-00955-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Bai JY, Ren HT (2014) PiRNAs biogenesis and its functions. Bioorg Khim 40:320–326

    PubMed  Google Scholar 

  17. Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14:42–54. https://doi.org/10.1016/j.gpb.2015.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tutar Y (2012) Pseudogenes. Comp Funct Genomics 2012:e424526. https://doi.org/10.1155/2012/424526

    Article  CAS  Google Scholar 

  19. Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X (2015) Pseudogene in cancer: real functions and promising signature. J Med Genet 52:17–24. https://doi.org/10.1136/jmedgenet-2014-102785

    Article  CAS  PubMed  Google Scholar 

  20. Meng S, Zhou H, Feng Z et al (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16:94. https://doi.org/10.1186/s12943-017-0663-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui B, Chen L, Zhang S et al (2014) MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood 124:546–554. https://doi.org/10.1182/blood-2014-03-559690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu K, Du J, Ruan L (2017) MicroRNA-21 regulates the viability and apoptosis of diffuse large B-cell lymphoma cells by upregulating B cell lymphoma-2. Exp Ther Med 14:4489–4496. https://doi.org/10.3892/etm.2017.5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabriely G, Yi M, Narayan RS et al (2011) Human glioma growth is controlled by MicroRNA-10b. Cancer Res 71:3563–3572. https://doi.org/10.1158/0008-5472.CAN-10-3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roncarati R, Lupini L, Shankaraiah RC, Negrini M (2019) The importance of microRNAs in RAS oncogenic activation in human cancer. Front Oncol. https://doi.org/10.3389/fonc.2019.00988

    Article  PubMed  PubMed Central  Google Scholar 

  25. Calin GA, Cimmino A, Fabbri M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. PNAS 105:5166–5171. https://doi.org/10.1073/pnas.0800121105

    Article  PubMed  PubMed Central  Google Scholar 

  26. Okada N, Lin C-P, Ribeiro MC et al (2014) A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28:438–450. https://doi.org/10.1101/gad.233585.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pekarsky Y, Croce CM (2010) Is miR-29 an oncogene or tumor suppressor in CLL? Oncotarget 1:224–227

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu G-H, Zhou Z-G, Chen R et al (2013) Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol 34:2175–2181. https://doi.org/10.1007/s13277-013-0753-8

    Article  CAS  PubMed  Google Scholar 

  29. Kanaan Z, Roberts H, Eichenberger MR et al (2013) A plasma MicroRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer. Ann Surg 258:400–408. https://doi.org/10.1097/SLA.0b013e3182a15bcc

    Article  PubMed  Google Scholar 

  30. Valeri N, Braconi C, Gasparini P et al (2014) MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 25:469–483. https://doi.org/10.1016/j.ccr.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hollis M, Nair K, Vyas A et al (2015) MicroRNAs potential utility in colon cancer: early detection, prognosis, and chemosensitivity. World J Gastroenterol 21:8284–8292. https://doi.org/10.3748/wjg.v21.i27.8284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed FE, Ahmed NC, Vos PW et al (2013) Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I proof of principle. Cancer Genomics Proteomics 10:93–113

    CAS  PubMed  Google Scholar 

  33. Mlcochova J, Faltejskova-Vychytilova P, Ferracin M et al (2015) MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget 6:38695–38704

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hiyoshi Y, Akiyoshi T, Inoue R et al (2017) Serum miR-143 levels predict the pathological response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Oncotarget 8:79201–79211. https://doi.org/10.18632/oncotarget.16760

    Article  PubMed  PubMed Central  Google Scholar 

  35. Perez-Carbonell L, Sinicrope FA, Alberts SR et al (2015) MiR-320e is a novel prognostic biomarker in colorectal cancer. Br J Cancer 113:83–90. https://doi.org/10.1038/bjc.2015.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nassar FJ, Msheik ZS, Itani MM et al (2021) Circulating miRNA as biomarkers for colorectal cancer diagnosis and liver metastasis. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11020341

    Article  Google Scholar 

  37. Fassan M, Cui R, Gasparini P et al (2019) miR-224 is significantly upregulated and targets caspase-3 and caspase-7 during colorectal carcinogenesis. Trans Oncol 12:282–291. https://doi.org/10.1016/j.tranon.2018.10.013

    Article  Google Scholar 

  38. Zhou J, Hu M, Wang F et al (2017) miR-224 controls human colorectal cancer cell line HCT116 proliferation by targeting Smad4. Int J Med Sci 14:937–942. https://doi.org/10.7150/ijms.19565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar P, Kuscu C, Dutta A (2016) Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 41:679–689. https://doi.org/10.1016/j.tibs.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zuo Y, Chen S, Yan L et al (2021) Development of a tRNA-derived small RNA diagnostic and prognostic signature in liver cancer. Genes & Diseases. https://doi.org/10.1016/j.gendis.2021.01.006

    Article  Google Scholar 

  41. Xiong W, Wang X, Cai X et al (2019) Identification of tRNA-derived fragments in colon cancer by comprehensive small RNA sequencing. Oncol Rep 42:735–744. https://doi.org/10.3892/or.2019.7178

    Article  CAS  PubMed  Google Scholar 

  42. Huang B, Yang H, Cheng X et al (2017) tRF/miR-1280 suppresses stem cell–like cells and metastasis in colorectal cancer. Cancer Res 77:3194–3206. https://doi.org/10.1158/0008-5472.CAN-16-3146

    Article  CAS  PubMed  Google Scholar 

  43. Li S, Shi X, Chen M et al (2019) Angiogenin promotes colorectal cancer metastasis via tiRNA production. Int J Cancer 145:1395–1407. https://doi.org/10.1002/ijc.32245

    Article  CAS  PubMed  Google Scholar 

  44. Tao E-W, Wang H-L, Cheng WY et al (2021) A specific tRNA half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res 40:67. https://doi.org/10.1186/s13046-021-01836-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwasaki YW, Siomi MC, Siomi H (2015) PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem 84:405–433. https://doi.org/10.1146/annurev-biochem-060614-034258

    Article  CAS  PubMed  Google Scholar 

  46. Weng W, Li H, Goel A (2019) Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochimica et Biophysica Acta (BBA) 1871:160–169. https://doi.org/10.1016/j.bbcan.2018.12.005

    Article  CAS  Google Scholar 

  47. Weng W, Liu N, Toiyama Y et al (2018) Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol Cancer. https://doi.org/10.1186/s12943-018-0767-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mai D, Ding P, Tan L et al (2018) PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics 8:5213–5230. https://doi.org/10.7150/thno.28001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Yang H, Ma D et al (2020) Serum PIWI-interacting RNAs piR-020619 and piR-020450 are promising novel biomarkers for early detection of colorectal cancer. Cancer Epidemiol Biomarkers Prev 29:990–998. https://doi.org/10.1158/1055-9965.EPI-19-1148

    Article  CAS  PubMed  Google Scholar 

  50. Vychytilova-Faltejskova P, Stitkovcova K, Radova L et al (2018) Circulating PIWI-interacting RNAs piR-5937 and piR-28876 are promising diagnostic biomarkers of colon cancer. Cancer Epidemiol Biomarkers Prev 27:1019–1028. https://doi.org/10.1158/1055-9965.EPI-18-0318

    Article  CAS  PubMed  Google Scholar 

  51. Chu H, Xia L, Qiu X et al (2015) Genetic variants in noncoding PIWI-interacting RNA and colorectal cancer risk. Cancer 121:2044–2052. https://doi.org/10.1002/cncr.29314

    Article  CAS  PubMed  Google Scholar 

  52. Yin J, Qi W, Ji C-G et al (2019) Small RNA sequencing revealed aberrant piRNA expression profiles in colorectal cancer. Oncol Rep 42:263–272. https://doi.org/10.3892/or.2019.7158

    Article  CAS  PubMed  Google Scholar 

  53. Mai D, Zheng Y, Guo H et al (2020) Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of human colorectal cancer. Theranostics 10:8468–8478. https://doi.org/10.7150/thno.46241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qu A, Wang W, Yang Y et al (2019) <p>A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer</p>. CMAR 11:3703–3720. https://doi.org/10.2147/CMAR.S193266

    Article  CAS  Google Scholar 

  55. Iyer DN, Wan TM-H, Man JH-W et al (2020) Small RNA profiling of piRNAs in colorectal cancer identifies consistent overexpression of pir-24000 that correlates clinically with an aggressive disease phenotype. Cancers 12:188. https://doi.org/10.3390/cancers12010188

    Article  CAS  PubMed Central  Google Scholar 

  56. Yin J, Jiang X-Y, Qi W et al (2017) piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci 108:1746–1756. https://doi.org/10.1111/cas.13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rinn JL, Chang HY (2020) Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem 89:283–308. https://doi.org/10.1146/annurev-biochem-062917-012708

    Article  CAS  PubMed  Google Scholar 

  58. Jiang M-C, Ni J-J, Cui W-Y et al (2019) Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 9:1354–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xue X, Yang YA, Zhang A et al (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35:2746–2755. https://doi.org/10.1038/onc.2015.340

    Article  CAS  PubMed  Google Scholar 

  60. Leucci E, Vendramin R, Spinazzi M et al (2016) Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531:518–522. https://doi.org/10.1038/nature17161

    Article  CAS  PubMed  Google Scholar 

  61. Yari H, Jin L, Teng L et al (2019) LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription. Nat Commun 10:5334. https://doi.org/10.1038/s41467-019-13313-z

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou Y, Zhong Y, Wang Y et al (2007) Activation of p53 by MEG3 Non-coding RNA*. J Biol Chem 282:24731–24742. https://doi.org/10.1074/jbc.M702029200

    Article  CAS  PubMed  Google Scholar 

  63. Mondal T, Subhash S, Vaid R et al (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat Commun 6:7743. https://doi.org/10.1038/ncomms8743

    Article  CAS  PubMed  Google Scholar 

  64. Zhao X, Wang P, Liu J et al (2015) Gas5 Exerts tumor-suppressive functions in human glioma cells by targeting miR-222. Mol Ther 23:1899–1911. https://doi.org/10.1038/mt.2015.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pickard MR, Williams GT (2014) Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 145:359–370. https://doi.org/10.1007/s10549-014-2974-y

    Article  CAS  PubMed  Google Scholar 

  66. Xu M, Xu X, Pan B et al (2019) LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer 18:135. https://doi.org/10.1186/s12943-019-1063-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiang J-F, Yin Q-F, Chen T et al (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24:513–531. https://doi.org/10.1038/cr.2014.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cai Z, Cao C, Ji L et al (2020) RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582:432–437. https://doi.org/10.1038/s41586-020-2249-1

    Article  CAS  PubMed  Google Scholar 

  69. Ni W, Yao S, Zhou Y et al (2019) Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer 18:143. https://doi.org/10.1186/s12943-019-1079-y

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhao Y, Li Y, Sheng J et al (2019) P53–R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J Exp Clin Cancer Res 38:379. https://doi.org/10.1186/s13046-019-1375-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang Y, Lu J-H, Wu Q-N et al (2019) LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer 18:174. https://doi.org/10.1186/s12943-019-1105-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu Y, Yang X, Chen Z et al (2019) m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 18:87. https://doi.org/10.1186/s12943-019-1014-2

    Article  PubMed  PubMed Central  Google Scholar 

  73. Avazpour N, Hajjari M, Kazemi Nezhad SR, Tahmasebi Birgani M (2020) SNHG1 long noncoding RNA is potentially up-regulated in colorectal adenocarcinoma. Asian Pac J Cancer Prev 21:897–901. https://doi.org/10.31557/APJCP.2020.21.4.897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu M, Chen X, Lin K et al (2018) The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer 17:141. https://doi.org/10.1186/s12943-018-0894-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bian Z, Zhang J, Li M et al (2018) LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res 24:4808–4819. https://doi.org/10.1158/1078-0432.CCR-17-2967

    Article  CAS  PubMed  Google Scholar 

  76. Zhang M, Weng W, Zhang Q et al (2018) The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol 11:113. https://doi.org/10.1186/s13045-018-0656-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Damas ND, Marcatti M, Côme C et al (2016) SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat Commun 7:13875. https://doi.org/10.1038/ncomms13875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun F, Liang W, Qian J (2019) The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol Med Rep 20:3583–3596. https://doi.org/10.3892/mmr.2019.10588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu Y, Zhang X, Hu X et al (2018) The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9. Mol Med 24:52. https://doi.org/10.1186/s10020-018-0050-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu W, Zhou G, Wang H et al (2020) Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer 146:2901–2912. https://doi.org/10.1002/ijc.32747

    Article  CAS  PubMed  Google Scholar 

  81. Luo K, Geng J, Zhang Q et al (2019) LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer. J Exp Clin Cancer Res 38:249. https://doi.org/10.1186/s13046-019-1263-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamada A, Yu P, Lin W et al (2018) A RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep 8:575. https://doi.org/10.1038/s41598-017-18407-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Di W, Weinan X, Xin L et al (2019) Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis 10:514. https://doi.org/10.1038/s41419-019-1707-x

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gao Q, Zhou R, Meng Y et al (2020) Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3-c-Myc axis. Oncogene 39:3926–3938. https://doi.org/10.1038/s41388-020-1266-8

    Article  CAS  PubMed  Google Scholar 

  85. Chen X, Zeng K, Xu M et al (2018) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982. https://doi.org/10.1038/s41419-018-0962-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu M, Chen X, Lin K et al (2019) lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol 12:3. https://doi.org/10.1186/s13045-018-0690-5

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen D-L, Lu Y-X, Zhang J-X et al (2017) Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics 7:4836–4849. https://doi.org/10.7150/thno.20942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu J, Han Z, Sun Z et al (2018) LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J Exp Clin Cancer Res 37:222. https://doi.org/10.1186/s13046-018-0896-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang X, Lai Q, He J et al (2019) LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int J Med Sci 16:51–59. https://doi.org/10.7150/ijms.27359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lan Y, Xiao X, He Z et al (2018) Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res 46:5809–5821. https://doi.org/10.1093/nar/gky214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao Y, Du T, Du L et al (2019) Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer. Cell Death Dis 10:568. https://doi.org/10.1038/s41419-019-1804-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang M, Han D, Yuan Z et al (2018) Long non-coding RNA H19 confers 5-Fu resistance in colorectal cancer by promoting SIRT1-mediated autophagy. Cell Death Dis 9:1149. https://doi.org/10.1038/s41419-018-1187-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shang A, Wang W, Gu C et al (2020) Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging (Albany NY) 12:8301–8320. https://doi.org/10.18632/aging.103139

    Article  CAS  Google Scholar 

  94. Shan Y, Ma J, Pan Y et al (2018) LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 9:722. https://doi.org/10.1038/s41419-018-0759-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jiang L, Zhao X-H, Mao Y-L et al (2019) Long non-coding RNA RP11–468E2.5 curtails colorectal cancer cell proliferation and stimulates apoptosis via the JAK/STAT signaling pathway by targeting STAT5 and STAT6. J Exp Clin Cancer Res 38:465. https://doi.org/10.1186/s13046-019-1428-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Haddadi N, Lin Y, Travis G et al (2018) PTEN/PTENP1: ‘regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer 17:37. https://doi.org/10.1186/s12943-018-0803-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karreth FA, Reschke M, Ruocco A et al (2015) The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161:319–332. https://doi.org/10.1016/j.cell.2015.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ye X, Fan F, Bhattacharya R et al (2015) VEGFR-1 pseudogene expression and regulatory function in human colorectal cancer cells. Mol Cancer Res 13:1274–1282. https://doi.org/10.1158/1541-7786.MCR-15-0061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He W, Yu Y, Huang W et al (2020) The pseudogene DUXAP8 promotes colorectal cancer cell proliferation, invasion, and migration by inducing epithelial-mesenchymal transition through interacting with EZH2 and H3K27me3. Onco Targets Ther 13:11059–11070. https://doi.org/10.2147/OTT.S235643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kristensen LS, Andersen MS, Stagsted LVW et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  101. Chen L-Y, Wang L, Ren Y-X et al (2020) The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer 19:164. https://doi.org/10.1186/s12943-020-01272-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu H, Wang C, Song H et al (2019) RNA-Seq profiling of circular RNAs in human colorectal cancer liver metastasis and the potential biomarkers. Mol Cancer 18:8. https://doi.org/10.1186/s12943-018-0932-8

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li X, Wang J, Zhang C et al (2018) Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J Pathol 246:166–179. https://doi.org/10.1002/path.5125

    Article  CAS  PubMed  Google Scholar 

  104. Weng W, Wei Q, Toden S et al (2017) Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23:3918–3928. https://doi.org/10.1158/1078-0432.CCR-16-2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hsiao K-Y, Lin Y-C, Gupta SK et al (2017) Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res 77:2339–2350. https://doi.org/10.1158/0008-5472.CAN-16-1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen J, Yang X, Liu R et al (2020) Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-κB pathway. Cell Death Dis 11:788. https://doi.org/10.1038/s41419-020-02989-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeng K, Chen X, Xu M et al (2018) CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 9:417. https://doi.org/10.1038/s41419-018-0454-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin J, Cai D, Li W et al (2019) Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem 74:60–68. https://doi.org/10.1016/j.clinbiochem.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  109. Wang D-K, Chong R-F, Song B-L et al (2020) Circular RNA circ-SMAD7 is downregulated in colorectal cancer and suppresses tumor metastasis by regulating epithelial mesenchymal transition. Eur Rev Med Pharmacol Sci 24:9241. https://doi.org/10.26355/eurrev_202009_23002

    Article  PubMed  Google Scholar 

  110. Li X-N, Wang Z-J, Ye C-X et al (2019) Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother 112:108611. https://doi.org/10.1016/j.biopha.2019.108611

    Article  CAS  PubMed  Google Scholar 

  111. Shang A, Gu C, Wang W et al (2020) Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol Cancer 19:117. https://doi.org/10.1186/s12943-020-01235-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang Z-J, Zhang Y-H, Qin X-J et al (2020) Circular RNA circDENND4C facilitates proliferation, migration and glycolysis of colorectal cancer cells through miR-760/GLUT1 axis. Eur Rev Med Pharmacol Sci 24:2387–2400. https://doi.org/10.26355/eurrev_202003_20506

    Article  PubMed  Google Scholar 

  113. Yang L, Sun H, Liu X et al (2020) Circular RNA hsa_circ_0004277 contributes to malignant phenotype of colorectal cancer by sponging miR-512-5p to upregulate the expression of PTMA. J Cell Physiol. https://doi.org/10.1002/jcp.29484

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jin Y, Yu LL, Zhang B et al (2018) Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res 51:e7811. https://doi.org/10.1590/1414-431X20187811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang J, Luo J, Liu G, Li X (2020) Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis. Biochem Biophys Res Commun 527:503–510. https://doi.org/10.1016/j.bbrc.2020.03.165

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Q, Zhang C, Ma J-X et al (2019) Circular RNA PIP5K1A promotes colon cancer development through inhibiting miR-1273a. World J Gastroenterol 25:5300–5309. https://doi.org/10.3748/wjg.v25.i35.5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang H, Li X, Meng Q et al (2020) CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer 19:13. https://doi.org/10.1186/s12943-020-1139-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou C, Liu H-S, Wang F-W et al (2020) circCAMSAP1 promotes tumor growth in colorectal cancer via the miR-328-5p/E2F1 axis. Mol Ther 28:914–928. https://doi.org/10.1016/j.ymthe.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  119. Zhao JP, Chen LL (2020) Circular RNA MAT2B induces colorectal cancer proliferation via sponging miR-610, resulting in an increased E2F1 expression. Cancer Manag Res 12:7107–7116. https://doi.org/10.2147/CMAR.S251180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen L-Y, Zhi Z, Wang L et al (2019) NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling. J Pathol 248:103–115. https://doi.org/10.1002/path.5238

    Article  CAS  PubMed  Google Scholar 

  121. Li R, Wu B, Xia J et al (2019) Circular RNA hsa_circRNA_102958 promotes tumorigenesis of colorectal cancer via miR-585/CDC25B axis. Cancer Manag Res 11:6887–6893. https://doi.org/10.2147/CMAR.S212180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ruan H, Deng X, Dong L et al (2019) Circular RNA circ_0002138 is down-regulated and suppresses cell proliferation in colorectal cancer. Biomed Pharmacother 111:1022–1028. https://doi.org/10.1016/j.biopha.2018.12.150

    Article  CAS  PubMed  Google Scholar 

  123. Yin W, Xu J, Li C et al (2020) Circular RNA circ_0007142 facilitates colorectal cancer progression by modulating CDC25A expression via miR-122-5p. Onco Targets Ther 13:3689–3701. https://doi.org/10.2147/OTT.S238338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang X, Tao G, Huang D et al (2020) Circular RNA NOX4 promotes the development of colorectal cancer via the microRNA-485-5p/CKS1B axis. Oncol Rep 44:2009–2020. https://doi.org/10.3892/or.2020.7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lu C, Fu L, Qian X et al (2020) Knockdown of circular RNA circ-FARSA restricts colorectal cancer cell growth through regulation of miR-330-5p/LASP1 axis. Arch Biochem Biophys 689:108434. https://doi.org/10.1016/j.abb.2020.108434

    Article  CAS  PubMed  Google Scholar 

  126. Chen C, Huang Z, Mo X et al (2020) The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res 39:91. https://doi.org/10.1186/s13046-020-01594-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen P, Yao Y, Yang N et al (2020) Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression. Cell Death Dis 11:557. https://doi.org/10.1038/s41419-020-02757-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tanaka E, Miyakawa Y, Kishikawa T et al (2019) Expression of circular RNA CDR1-AS in colon cancer cells increases cell surface PD-L1 protein levels. Oncol Rep 42:1459–1466. https://doi.org/10.3892/or.2019.7244

    Article  CAS  PubMed  Google Scholar 

  129. Geng Y, Jiang J, Wu C (2018) Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. https://doi.org/10.1186/s13045-018-0643-z

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang H, Jiang L-H, Sun D-W et al (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25:1–7. https://doi.org/10.1007/s12282-017-0793-9

    Article  PubMed  Google Scholar 

  131. Strul H, Arber N (2007) Screening techniques for prevention and early detection of colorectal cancer in the average-risk population. Gastrointest Cancer Res 1:98–106

    PubMed  PubMed Central  Google Scholar 

  132. Desmond BJ, Dennett ER, Danielson KM (2019) Circulating extracellular vesicle microRNA as diagnostic biomarkers in early colorectal cancer—a review. Cancers (Basel). https://doi.org/10.3390/cancers12010052

    Article  Google Scholar 

  133. Liu Y, Liu R, Yang F et al (2017) miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer 16:53. https://doi.org/10.1186/s12943-017-0625-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhu M, Huang Z, Zhu D et al (2017) A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget 8:17081–17091. https://doi.org/10.18632/oncotarget.15059

    Article  PubMed  PubMed Central  Google Scholar 

  135. Karimi N, Ali Hosseinpour Feizi M, Safaralizadeh R et al (2019) Serum overexpression of miR-301a and miR-23a in patients with colorectal cancer. J Chin Med Assoc 82:215–220. https://doi.org/10.1097/JCMA.0000000000000031

    Article  PubMed  Google Scholar 

  136. Peng Z-Y, Gu R-H, Yan B (2018) Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. J Cell Biochem. https://doi.org/10.1002/jcb.27291

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wang J, Yan F, Zhao Q et al (2017) Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci Rep 7:4150. https://doi.org/10.1038/s41598-017-04386-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shirafkan N, Mansoori B, Mohammadi A et al (2018) MicroRNAs as novel biomarkers for colorectal cancer: new outlooks. Biomed Pharmacother 97:1319–1330. https://doi.org/10.1016/j.biopha.2017.11.046

    Article  CAS  PubMed  Google Scholar 

  139. Ding J, Li J, Wang H et al (2017) Long noncoding RNA CRNDE promotes colorectal cancer cell proliferation via epigenetically silencing DUSP5/CDKN1A expression. Cell Death Dis 8:e2997–e2997. https://doi.org/10.1038/cddis.2017.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nikolaou S, Qiu S, Fiorentino F et al (2018) Systematic review of blood diagnostic markers in colorectal cancer. Tech Coloproctol 22:481–498. https://doi.org/10.1007/s10151-018-1820-3

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yang G, Zhang Y, Yang J (2019) A five-microRNA signature as prognostic biomarker in colorectal cancer by bioinformatics analysis. Front Oncol 9:1207. https://doi.org/10.3389/fonc.2019.01207

    Article  PubMed  PubMed Central  Google Scholar 

  142. Matsumura T, Sugimachi K, Iinuma H et al (2015) Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 113:275–281. https://doi.org/10.1038/bjc.2015.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang X, Zeng Z, Hou Y et al (2014) MicroRNA-92a as a potential biomarker in diagnosis of colorectal cancer: a systematic review and meta-analysis. PLoS ONE 9:e88745. https://doi.org/10.1371/journal.pone.0088745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Henry JC, Azevedo-Pouly ACP, Schmittgen TD (2011) MicroRNA replacement therapy for cancer. Pharm Res 28:3030–3042. https://doi.org/10.1007/s11095-011-0548-9

    Article  CAS  PubMed  Google Scholar 

  145. Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906. https://doi.org/10.1248/bpb.29.903

    Article  CAS  PubMed  Google Scholar 

  146. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477. https://doi.org/10.1073/pnas.0707351104

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ibrahim AF, Weirauch U, Thomas M et al (2011) MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 71:5214–5224. https://doi.org/10.1158/0008-5472.CAN-10-4645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

CK wrote the original draft of the manuscript and conducted the literature research, DK critically revised the final draft and supervised the manuscript write-up.

Corresponding author

Correspondence to Devarajan Karunagaran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, C., Karunagaran, D. Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem 477, 1817–1828 (2022). https://doi.org/10.1007/s11010-022-04412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04412-5

Keywords

Navigation