Skip to main content
Log in

Wires for spring construction: full scale fatigue experimental tests

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper deals with the experimental assessment of the fatigue life of wires for spring construction. Fatigue testing of full-scale wires is not a well established procedure. The aim of the paper is to demonstrate that the fatigue properties of full-scale wires for spring construction can be assessed with a level of accuracy comparable with tests performed on standard small-scale specimens. For this purpose, a new bench able to perform high frequency tests for the characterization of the wires in the high and very high cycle fatigue regions is designed, built and employed. The failure mechanism of the tested wires is described by an in-depth analysis of the fractured surfaces. By a comparison with available literature data, the difference with respect to similar tests performed on small-scale specimens is highlighted. Performing the tests on the full-scale wires allows the assessment of the effectiveness of the manufacturing process. The effect of the actual surface finishing on the fatigue life of wires can be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(2a_2\) :

Pitch of adjacent roughness notches along the load axis

\(\delta p_i\) :

Uncertainty associated to each parameter \(p_i\)

\(\varGamma \) :

Curvature of the beam

\(\mu \) :

Mean value

\(\sigma \) :

Standard deviation

\(\sigma _a\) :

Fatigue stress amplitude

\(\sigma _w\) :

Endurance fatigue limit

\(\sigma _{max}\) :

Stress on wire outer surface

\(\sqrt{area_R}\) :

Equivalent defect size

a :

Distance between central and lateral supports

\(a_1\) :

Roughness notch depth

b :

Distance between the two central supports

d :

Wire diameter

E :

Elastic modulus

h :

Dial gauge readout

HV :

Vickers Hardness

J :

Moment of inertia of the beam cross section

l :

Span of the arcmeter

m :

Inverse slope of Wöhler’s curve

\(M\left( x\right) \) :

Bending moment on the beam

\(N_f\) :

Cycles to failure

\(P_1\) :

Force acting at each of the two central supports

\(R_a\) :

Arithmetic mean surface roughness

\(R_t\) :

Total height of the roughness profile

\(T_\sigma \) :

Scatter index of Wöhler’s curve

\(u_{TOT}\) :

Total measure uncertainty

\(v\left( x\right) \) :

Beam transversal displacement

\(v_1\) :

Transversal displacement of the two central supports

x :

Position along beam axis

References

  1. Abe T, Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of 1800 MPa class spring steels. Fatigue Fract Eng Mater Struct 27(2):159–167. https://doi.org/10.1111/j.1460-2695.2004.00737.x

    Article  Google Scholar 

  2. Grad P, Reuscher B, Brodyanski A, Kopnarski M, Kerscher E (2012) Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scripta Mater 67(10):838–841. https://doi.org/10.1016/j.scriptamat.2012.07.049

    Article  Google Scholar 

  3. Kaiser B, Pyttel B, Berger C (2011) VHCF-behavior of helical compression springs made of different materials. Int J Fatigue 33(1):23–32. https://doi.org/10.1016/J.IJFATIGUE.2010.04.009

    Article  Google Scholar 

  4. Pyttel B, Brunner I, Kaiser B, Berger C, Mahendran M (2014) Fatigue behaviour of helical compression springs at a very high number of cycles-investigation of various influences. Int J Fatigue 60:101–109. https://doi.org/10.1016/J.IJFATIGUE.2013.01.003

    Article  Google Scholar 

  5. Zoroufi M, Fatemi A (2007) A guideline for fatigue testing of components. In: Gdoutos EE (ed) Experimental analysis of nano and engineering materials and structures. Springer, Netherlands, pp 173–174

    Chapter  Google Scholar 

  6. Bacher-Hoechst M, Issler S (2013) Assessment of Very High Cycle Fatigue (VHCF) Effects in Practical Applications. Procedia Eng 66:26–33. https://doi.org/10.1016/j.proeng.2013.12.059

    Article  Google Scholar 

  7. Godfrey HJ (1941) The fatigue and bending properties of cold drawn steel wire. Trans Am Soc Metals 29(52):133–168

    Google Scholar 

  8. Shelton S, Swanger W (1935) Fatigue properties of steel wire. J Res Natl Bur Stand 14(1):17–32. https://doi.org/10.6028/jres.014.005

    Article  Google Scholar 

  9. Zhang J, Yang Z, Li S, Hui W, Weng Y (2006) Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiCrV6 and 54SiCr6. Acta Metall Sin 42:259–264

    Google Scholar 

  10. Berto F, Lazzarin P, Yates JR (2011) Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy method. Fatigue Fract Eng Mater Struct 34(11):921–943. https://doi.org/10.1111/j.1460-2695.2011.01585.x

    Article  Google Scholar 

  11. Akiniwa Y, Stanzl-Tschegg S, Mayer H, Wakita M, Tanaka K (2008) Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime. Int J Fatigue 30(12):2057–2063. https://doi.org/10.1016/J.IJFATIGUE.2008.07.004

    Article  Google Scholar 

  12. Murakami Y (2002) Metal Fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Oxford

    Google Scholar 

  13. Pöllänen I, Martikka H (2010) Optimal re-design of helical springs using fuzzy design and FEM. Adv Eng Softw 41(3):410–414. https://doi.org/10.1016/J.ADVENGSOFT.2009.03.010

    Article  MATH  Google Scholar 

  14. Zhu Y, Wang Y, Huang Y (2014) Failure analysis of a helical compression spring for a heavy vehicles suspension system. Case Stud Eng Failure Anal 2(2):169–173. https://doi.org/10.1016/J.CSEFA.2014.08.001

    Article  Google Scholar 

  15. Niemann G, Winter H, Höhn BR (2005) Maschienenelemente. Springer-Verlag, Berlin

    Google Scholar 

  16. Hartmann E, Howell F (1959) Laboratory Fatigue testing of materials. In: Sines G, Waisman JL (eds) Metal fatigue. McGraw-Hill Co., New York

    Google Scholar 

  17. Nakamura H, Nishihara T (1959) New Fatigue Testing Machine for Wire Rod. Utility Model Publ 45:45–49 (in Japanese)

    Google Scholar 

  18. Huck M (1995) Rotating bending testing machine for long round rods. Patent WO/1995/002810

  19. IABG: Rotating bending test machine (RBTM)

  20. Ballo F, Carboni M, Mastinu G, Previati G (2019) Tempered Wire Fatigue Testing. In: SAE Technical Paper 2019-01-0532, pp. 1–5. https://doi.org/10.4271/2019-01-0532.Abstract

  21. Budynas RG, Nisbett JK (2014) Shigley’s Mechanical Engineering Design. McGraw Hill

  22. Campagnolo A, Dabalà M, Meneghetti G (2019) Effect of salt bath nitrocarburizing and post-oxidation on static and Fatigue behaviours of a construction steel. Metals 9(12):1–19

    Article  Google Scholar 

  23. Baragetti S, Tordini F (2007) Fatigue resistance of PECVD coated steel alloy. Int J Fatigue 29(9–11):1832–1838. https://doi.org/10.1016/J.IJFATIGUE.2007.02.008

    Article  MATH  Google Scholar 

  24. (2006) EN10083-3:2006: Steels for quenching and tempering–part 3: technical delivery conditions for alloy steels. Standard, European Standard

  25. ASTM-E739 (2010) Standard practice for statistical analysis of linear or linearized stress-life and strain-life Fatigue data. Standard, ASTM International

  26. EN10270-2:2011 (2011) Oil hardened and tempered spring steel wire. Standard, European Standard

  27. ASTM-E8/E8M-16ae1 (2016) Standard Test Methods for Tension Testing of Metallic Materials. Standard, ASTM. International

  28. ASTM-E140-12B(2019)e1 (2019) Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, scleroscope hardness, and leeb hardness. Standard, ASTM International

  29. ISO6508-1 (2016) Metallic materials—Rockwell hardness test—part 1: test method. Standard, International Organization for Standardization (2016)

Download references

Acknowledgements

F.A.R. S.p.A. belonging to Steelgroup Holding, Italy is gratefully acknowledged. Mr. Fabio Pederiva and Mr. Luca Merlini have provided direct support during the whole project. A special thank to Dr. Mario Pennati, who designed the test bench. Mr. Dario Crema, Dr. Andrea Gianneo, Mr. Davide Pegoraro and Mr. Giacomo Sala have given substantial contribution. The Italian Ministry of Education, University and Research is acknowledged for the support provided through the Project “Department of Excellence LIS4.0-Lightweight and Smart Structures for Industry 4.0”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Previati.

Ethics declarations

Conflict of interest

This study was funded by F.A.R. S.p.A. belonging to Steelgroup Holding

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballo, F., Carboni, M., Mastinu, G. et al. Wires for spring construction: full scale fatigue experimental tests. Meccanica 57, 213–228 (2022). https://doi.org/10.1007/s11012-021-01448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01448-7

Keywords

Navigation