Skip to main content
Log in

Multispectral Sampling Sequence Formation in an Analog Optical Path: Possibility of Automatic Control Using Digital Feedback

  • Published:
Measurement Techniques Aims and scope

In this study, we discuss the application of high-stability, pulsed mode-locked lasers (MLLs) as sources of sampling signals with low jitter in wide-bandwidth, photonic analog-to-digital converters. The implementation of a promising method of increasing the sampling rate of signals with bandwidth up to 2 GHz requires systems with multispectral, repetitively pulsed sampling sequences. On account of the sensitivity of such systems to temperature changes and mechanical disturbances, the jitter of the sampling sequences increases and errors in setting the light-signal delays in the spectral channels result in the violation of pulse-repetition equidistance. Consequently, such a degradation of sampling-sequence quality decreases analog-to-digital conversion precision. The method of processing automatic control of an analog optical path using digital feedback and motorized delay lines is proposed for sampling multispectral sequence pulses equidistance improvement. The results of mathematical modeling and experimental implementation of the method in a 3-channel sampling multispectral sequence generation system with tripling of the pulses rate of the source MLL are presented. The discussed method can be applied in constructing optical sampling-based, analog-to-digital microwave photonic systems for different purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. G. C. Valley, Opt. Express, 15, No. 5, 1995–1982 (2007), https://doi.org/10.1364/OE.15.001955.

    Article  ADS  Google Scholar 

  2. J. D. McKinney and K. J. Williams, IEEE Trans. Microw. Theory Tech., 57, No. 8, 2093–2099 (2009), https://doi.org/10.1109/TMTT.2009.2025468.

    Article  ADS  Google Scholar 

  3. R. S. Starikov, Photonic ADCs, Usp. Sovr. Radioelektron., No. 2, 3–39 (2015), https://elibrary.ru/tuiiqx.

  4. R. S. Starikov, Proc. SPIE, 10176, Article ID 1017618 (2016), https://doi.org/10.1117/12.2268144.

  5. D. J. Esman, A. O. J. Wiberg, N. Alic, and S. Radic, J. Lightwave Technol., 33, 2256–2262 (2015), https://doi.org/10.1109/JLT.2015.2408551.

    Article  ADS  Google Scholar 

  6. P. E. D. Cruz, T. M. F. Alves, and A. V. T. Cartaxo, Opt. Photonics J., 9, No. 12, 219–234 (2019), https://doi.org/10.4236/opj.2019.912018.

    Article  ADS  Google Scholar 

  7. Y. Xu, S. Li, X. Xue, et al., IEEE Photonics J., 11, No. 4, 1–9 (2019), https://doi.org/10.1109/JPHOT.2019.2926399.

    Article  Google Scholar 

  8. M. S. Dadashev, D. S. Zemtsov, E. Yu. Zlokazov, et al., Photonic Analog-to-Digital Converter with Electronic Quantization and Optical Sampling at Speeds up to 10 GS/s, Radiotekh. Elektron., 68, No. 2, 188–194 (2023), https://doi.org/10.1134/S1064226923020031.

    Article  Google Scholar 

  9. N. Mehta et al., 2020 IEEE Symposium on VLSI Technology Honolulu, HI, USA, 1–2 (2020), https://doi.org/10.1109/VLSITechnology18217.2020.9265101.

    Book  Google Scholar 

  10. Z. Li, X. Wang, Y. Zhang, and L. Zhang, Opt. Express, 30, No. 16, 29611–29620 (2022), https://doi.org/10.3390/photonics9110831.

    Article  ADS  Google Scholar 

  11. W. Lyu, Z. Li, L. Zhang, et al., Photonics, 9, No. 11, 831 (2022), https://doi.org/10.3390/photonics9110831.

    Article  Google Scholar 

  12. M. Frankel, J. Kang, and R. Esman, Electron. Lett., 33, No. 25, 2096–2097 (1997), https://doi.org/10.1049/eM997144.

    Article  ADS  Google Scholar 

  13. J. Kang and R. Esman, Electron. Lett., 35, No. 1, 60–61 (1999), https://doi.org/10.1049/eM9990041.

    Article  ADS  Google Scholar 

  14. D. S. Citrin, IEEE Trans. Commun., 70, No. 1, 445–454 (2022), https://doi.org/10.1109/TCOMM.2021.3116711.

    Article  Google Scholar 

  15. M. P. Fok and K. L. Lee, IEEE Photonics Technol. Lett., 16, No. 3, 876–878 (2004), https://doi.org/10.1109/LPT.2004.823696.

    Article  ADS  Google Scholar 

  16. G. L. Wu, S. Q. Li, X. W. Li, and J. P. Chen, Opt. Express, 18, No. 20, 21162–21168 (2010), https://doi.org/10.1364/OE.18.021162.

    Article  ADS  Google Scholar 

  17. H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, Opt. Express, 24, No. 12, 13489–13499 (2016), https://doi.org/10.1364/OE.24.013489.

  18. G. Yang, W. Zou, L. Yu, and J. Chen, Opt. Lett., 43, No. 15, 3530–3533 (2018), https://doi.org/10.1364/OL.43.003530.

    Article  ADS  Google Scholar 

  19. J. A. Nelder and R. Mead, Comput. J., 7, No. 4, 308–313 (1965), https://doi.org/10.1093/comjnl/81.27.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The study was supported by the Russian Foundation for Basic Research within the scientific project 20-37-90119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Zemtsov.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 6, pp. 34–39, June, 2023. DOI: https://doi.org/10.32446/0368-1025it.2023-6-34-39.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemtsov, D.S., Zlokazov, E.Y., Nebavskiy, V.A. et al. Multispectral Sampling Sequence Formation in an Analog Optical Path: Possibility of Automatic Control Using Digital Feedback. Meas Tech 66, 406–411 (2023). https://doi.org/10.1007/s11018-023-02241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02241-6

Keywords

Navigation