Skip to main content
Log in

Methods of diffractive optical element generation for rapid, high-quality 3D image formation of objects divided into a set of plane layers

  • Published:
Measurement Techniques Aims and scope

Abstract

This article focuses on generation of diffractive optical elements (DOEs) and computer holograms for forming three-dimensional (3D) images. We intend to analyze the possibilities of increasing (1) the speed of generation of DOEs, and (2) the quality of 3D objects created by the DOEs generated. For this, four methods of optical element generation are analyzed, which are based on division of 3D objects into plane layers. We assess the quality of 3D-object image reconstruction and the resource intensity of the methods with respect to synthesis of DOEs. We conduct a computer simulation of reconstruction of images of 3D objects via the generated DOEs. In optical experiments on formation of 3D objects, the DOEs generated are displayed on a liquid crystal spatial light modulator. We experimentally establish that the method of parallel computation of plane layers and the method of nonconvex optimization are optimum for formation of 3D objects vis-à-vis quality of their reconstruction. Taking into account the computational resource intensity of the considered methods, the iterative method of parallel computation of plane layers yielded the optimal DOE generation results in terms of reconstruction quality-to-synthesis speed ratio. The possibility of fast formation of high-quality 3D objects comprising dozens of layers has been demonstrated, which can be used in high-resolution 3D video communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diffractive Computer Optics [in Russian], ed. V. A. Soifer, Fizmatlit, Moscow (2007).

  2. Doskolovich, L.L., Mingazov, A.A., Byzov, E.V., Bykov, D.A., Bezus, E.A.: “Method for calculating the eikonal function and its application for the generation of diffractive optical elements for focusing in a given area,” Komp. Opt 46(2), 173–183 (2022). https://doi.org/10.18287/2412-6179-CO-1029

    Article  ADS  Google Scholar 

  3. Schmidt, S., Thiele, S., Toulouse, A., Bosel, C., Tiess, T., Herkommer, A., Gross, H., Giessen, H.: Optica 7(10), 1279–1286 (2020). https://doi.org/10.1364/OPTICA.395177

    Article  ADS  Google Scholar 

  4. Khorin, P.A., Khonina, S.N.: J. Opt. Technol. 90(5), 236–241 (2023). https://doi.org/10.1364/JOT.90.000236

    Article  Google Scholar 

  5. Pi, D., Liu, J., Light, Y.W.: Sci. Appl. 11, 231 (2022). https://doi.org/10.1038/s41377-022-00916-3

    Article  Google Scholar 

  6. Shi, K., Yoshimoto, N., Zhang, G.: Opt. Express 31(21), 34817–34826 (2023). https://doi.org/10.1364/OE.501898

    Article  ADS  Google Scholar 

  7. Di Leonardo, R., Lanni, F., Ruocco, G.: Opt. Express 15(4), 1913–1922 (2007). https://doi.org/10.1364/OE.15.001913

    Article  ADS  Google Scholar 

  8. Yang, S., Papagiakoumou, E., Guillon, M., de Sars, V., Tang, Ch -M., Emiliani, V.: J. Neural. Eng 8, 46002 (2011). https://doi.org/10.1088/1741-2560/8Z4/046002

    Article  ADS  Google Scholar 

  9. Faini, G., Tanese, D., Molinier, C.: Nat Commun 8, 1888 (2023). https://doi.org/10.1038/s41467-023-37416-w

    Article  Google Scholar 

  10. Lesem, L.B., Hirsch, P.M., Jordan, J.A.: Ibm J Res. Dev. 13(2), 150–155 (1969). https://doi.org/10.1147/rd.132.0150

    Article  Google Scholar 

  11. Kompanets, I.N., Andreev, A.L.: Microdisplays in spatial light modulators. Quantum Electron. 47(4), 294–302 (2017). https://doi.org/10.1070/QEL16293

    Article  ADS  Google Scholar 

  12. Evtikhiev, N.N., Krasnov, V.V., Ryabcev, I.P., Rodin, V.G., Starikov, R.S., Cheremkhin, P.A.: Meas. Techn., 64. No 5, 346–351 (2021). https://doi.org/10.1007/s11018-021-01940-2

    Article  Google Scholar 

  13. Yin, K., Hsiang, E.-L., Zou, J., Li, Y., Yang, Z., Yang, Q., Lai, P.-C., Lin, C.-L., Light, S.-T.W.: Sci. Appl. 11, 161 (2022). https://doi.org/10.1038/s41377-022-00851-3

    Article  Google Scholar 

  14. Rymov, D.A., Shifrina, A.V., Cheremkhin, P.A., Rodin, V.G., Krasnov, V.V.: Meas. Techn., 66. No 6, 392–397 (2023). https://doi.org/10.1007/s11018-023-02239-0

    Article  Google Scholar 

  15. Correa-Rojas, N.A., Gallego-Ruiz, R.D., Alvarez-Castano, M.I.: Comput. Opt. 46(1), 30–38 (2022). https://doi.org/10.18287/2412-6179-CO-857

    Article  ADS  Google Scholar 

  16. Park, J.-H.: J. Inf. Disp. 18(1), 1–12 (2016). https://doi.org/10.1080/15980316.2016.1255672

    Article  MathSciNet  Google Scholar 

  17. Wakunami, K., Yamaguchi, M.: Opt. Express 19(10), 9086–9101 (2011). https://doi.org/10.1364/OE.19.009086

    Article  ADS  Google Scholar 

  18. Ichigawa, T., Yoneyama, T., Sakamoto, Y.: Opt. Express 21(26), 32019–32031 (2013). https://doi.org/10.1364/OE.21.032019

    Article  ADS  Google Scholar 

  19. Zhang, Y., Fan, H., Wang, F., Gu, X., Qian, X., Poon, T.-C.: Appl. Opt. 61(5), B363–B374 (2022). https://doi.org/10.1364/AO.444973

    Article  Google Scholar 

  20. Zhang, J., Pegard, N., Zhong, J., Adesnik, H., Waller, L.: Optica 4(10), 1306–1313 (2017). https://doi.org/10.1364/OPTICA.4.001306

    Article  ADS  Google Scholar 

  21. Clark, T.W., Offer, R.F., Franke-Arnold, S., Arnold, A.S., Radwell, N.: Opt. Express 24(6), 6249–6264 (2016). https://doi.org/10.1364/OE.24.006249

    Article  ADS  Google Scholar 

  22. Piestun, R., Spektor, B., Shamir, J.: J. Opt. Soc. Am. A 13(9), 1837–1848 (1996). https://doi.org/10.1364/JOSAA.13.001837

    Article  ADS  Google Scholar 

  23. Xiao-yu, J.A., Chuang, P., Xi, W., Yantao, Z.: Proc. Spie 8556, 85561H (2012). https://doi.org/10.1117/12.981934

    Article  Google Scholar 

  24. Makowski, M., Sypek, M., Kolodziejczyk, A., Mikula, G., Suszek, J.: Opt. Eng 46(4), 45802 (2007). https://doi.org/10.1117/1.2727379

    Article  ADS  Google Scholar 

  25. Dorsch, R.G., Lohmann, A.W., Sinzinger, S.: Appl. Opt. 33(5), 869–875 (1994). https://doi.org/10.1364/AO.33.000869

    Article  ADS  Google Scholar 

  26. Ying, C., Pang, H., Fan, C., Zhou, W.: Opt. Eng 50(5), 55802 (2011). https://doi.org/10.1117/13577704

    Article  ADS  Google Scholar 

  27. Kumar, D., Nishchal, N.K.: Optik 127(24), 12069–12077 (2016). https://doi.org/10.1016/j.ijleo.2016.09.114

    Article  ADS  Google Scholar 

  28. Horisaki, R., Nishizaki, Y., Kitaguchi, K., Saito, M., Tanida, J.: Appl. Opt. 60(4), A323–A328. https://doi.org/10.1364/AO.404151

  29. Shimobaba, T., Blinder, D., Birnbaum, T., Hoshi, I., Shiomi, H., Schelkens, P., Ito, T.: Front. Photonics 3, 854391 (2022). https://doi.org/10.3389/fphot.2022.854391

    Article  Google Scholar 

  30. Shi, L., Li, B., Kim, C., Kellnhofer, P., Matusik, W.: Nature 591(7849), 234–239 (2021). https://doi.org/10.1038/s41586-020-03152-0

    Article  ADS  Google Scholar 

  31. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 75(2), 237–246 (1972)

    Google Scholar 

  32. Wyrowski, F., Bryngdahl, O.: J. Opt. Soc. Am. A 5(7), 1058–1065 (1988). https://doi.org/10.1364/JOSAA.5.001058

    Article  ADS  Google Scholar 

  33. Curtis, F.E., Que, X.: Math. Program. Comput. 7(4), 399–428 (2015). https://doi.org/10.1007/s12532-015-0086-2

    Article  MathSciNet  Google Scholar 

  34. Verrier, N., Atlan, M.: Appl. Opt. 50(34), H136–H146 (2011). https://doi.org/10.1364/AO.50.00H136

    Article  Google Scholar 

  35. Evtikhiev, N.N., Rodin, V.G., Savchenkova, E.A., Starikov, R.S., Cheremkhin, P.A.: Meas. Techn., 65. No 6, 432–437 (2022). https://doi.org/10.1007/s11018-022-02101-9

    Article  Google Scholar 

  36. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall 954, (2008)

Download references

Funding

This work was supported by the Russian Science Foundation, grant No. 23-12-00336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Cheremkhin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 11, pp. 45–51, November, 2023. Russian DOI: https://doi.org/10.32446/0368-1025it.2023-11-45-51

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original article submitted October 27, 2023. Original article reviewed November 2, 2023. Original article accepted November 23, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlokazov, E.Y., Minaeva, E.D., Rodin, V.G. et al. Methods of diffractive optical element generation for rapid, high-quality 3D image formation of objects divided into a set of plane layers. Meas Tech (2024). https://doi.org/10.1007/s11018-024-02301-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11018-024-02301-5

Keywords

Navigation