Skip to main content
Log in

Estimating High Latitude Carbon Fluxes With Inversions Of Atmospheric CO2

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Atmospheric inversions have proven to be useful tools, showing for example the likely existence of a large terrestrial carbon sink in the northern mid-latitudes. However, as we go to smaller spatial scales the uncertainties in the inversions increase rapidly, and the task of finding the distribution of the sink between North America, Europe and Asia has been shown to be very difficult. The uncertainty in the fluxes due to network selection, transport model error and inversion set up tends to be too high for studying either net annual fluxes or interannual variability on spatial scales such as the North American Boreal or Eurasian Boreal regions. We discuss the path forward; to couple together the atmospheric inversions with process based terrestrial carbon models, creating carbon data assimilation systems. Such systems are being developed now and could prove to be very powerful. The multi-disciplinary nature of the data assimilation system requires information from flux towers, soil and above ground biomass inventories, remote sensed fields, atmospheric CO2 concentrations and climate data as well as model development and will need a massive community effort if it will succeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angert, A., Biraud, S., Bonfils, C., Buermann, W. and Fung, I.: 2004, ‘CO2 seasonality indicates origin of post-Pinatubo sink’, Geophys. Res. Letters 31, Art. L11103.

  • Andres, R.J., Marland, G., Fung, I. and Matthews, E.: 1996, ‘A 1× 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990’, Glob. Biogeochem. Cyc 10, 419–429.

    Article  Google Scholar 

  • Baker, D.F., Law, R.M., Gurney, K.R., Rayner, P., Peylin, P., Denning, A.S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I.Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S. and Zhu, Z.: (2006)[] ‘TransCom3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003’, Global Biogeochem. Cycles, 20, GB1002, doi:10.1029/2004GB002439.

  • Bousquet, P., Ciais, P., Peylin, P., Ramonet, M. and Monfray, P.: 1999, ‘Inverse modeling of annual atmospheric CO2 sources and sinks. 1. Method and control inversion’, J. Geophys. Res 104, 26161–26178.

    Article  Google Scholar 

  • Dargaville, R.J., Law, R.M. and Pribac, F.: 2000, ‘Implications of interannual variability in atmospheric circulation on modelled CO2 concentrations and source estimates’, Global Biogeochem. Cycles 14, 931–943.

    Article  Google Scholar 

  • Dargaville, R.J., McGuire, A.D. and Rayner, P.J.: 2002, ‘Estimates of large-scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO2 measurements’, Climatic Change 55, 273–285.

    Article  Google Scholar 

  • Dargaville, R.J., Doney, S.C. and Fung, I.Y.: 2003, ‘Inter-annual variability in the interhemispheric atmospheric CO2 gradient: Contributions from transport and the seasonal rectifier’, Tellus 55B, 711–722.

    Article  Google Scholar 

  • Denning, A., Holzer, M., Gurney, K., Heimann, M., Law, R., Rayner, P., Fung, I., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M. and Levin, I.: 1999, ‘Three-dimensional transport and concentrations of SF6’, a model inter-comparison study, (TransCom 2), Tellus B 51, 266–297.

    Article  Google Scholar 

  • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Samiento, J., Takahashi, T. and Tans, P.: 1998, 'A large terrestrial carbon sink in North America implied by atmospheric and oceanic CO2 data and models’, Science 282, 442–446.

    Article  Google Scholar 

  • Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P., Bruwiler, L., Chen, Y.H., Ciais, P., Fan, S., Fung, I.Y., Gloor, E., Heimann, M., Higuchi, K., John, J. and Kowlcyzk, E.: 2003, ‘TransCom3 CO2 inversion comparison: 1: Annual mean control results to transport and prior flux information’ Tellus 55B, 555–579.

    Article  Google Scholar 

  • Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Pak, B.C., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.H., Ciais, P., Fung, I.Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P., Prather, M. and Taguchi, S.: 2004, ‘Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks’, Global Biogeochem. Cycles 18, GB1010, doi:10.1029/2003GB002111.

  • Gu, L., Baldocchi, D.D., Worfsy, S.C., Munger, J.W., Michalsky, J.J., Urbanski S.P. and Boden, T.A.: 2003, ‘Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis.’ Science 299, 2035–2038.

    Article  Google Scholar 

  • Houghton, R.A. and Hackler, J.L.: 2002, ‘Carbon flux to the atmosphere from land-use changes’, In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

  • Kaminski, T., Heimann, M. and Giering, R.: 1999, ‘A course grid three-dimensional global inversion model of the atmospheric transport’, 1: Adjoint model and Jacobian matrix, J. Geophys. Res. 104, 18535–19553.

    Article  Google Scholar 

  • Kaminski, T., Rayner, P.J., Heimann, M. and Enting, I.G.: 2001, ‘On aggregation errors in atmospheric transport inversions’, J. Geophys. Res. 106(D5), 4703–4715.

    Article  Google Scholar 

  • Law, R.M., Rayner, P.J., Denning, A.S., Erickson, D., Fung, I.Y., Heimann, H., Piper, S.C., Ramonet, M., Taguchi, S., Taylor, J.A., Trudinger, C.M. and Watterson, I.G.: 1996, ‘Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions’, Global Biogeochem. Cycles 10, 783–796.

    Article  Google Scholar 

  • Marland, G., Boden, T.A. and Andres, R.J.: 2003, ‘Global, Regional, and National CO2 Emissions.’ In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

  • Rayner, P.J., Enting, I.G., Francey, R.J. and Langenfelds, R.L.: 1999, ‘Reconstructing the recent carbon cycle from atmospheric CO2’, δ 13C and O2/N2 observations, Tellus 51B, 213–232.

    Article  Google Scholar 

  • Rayner, P.J., Scholze, M., Knorr, W., Kaminski, T., Giering R. and Widmann, H.: 2005, ‘Two decades of terrestrial carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS)’, Global Biogeochem. Cycles, 19, GB2026, doi:10.1029/2004GB002254.

  • Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M.: 2003a, 'CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport’, Atmos. Chem. Phys 3, 1919–1964.

    Article  Google Scholar 

  • Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M.: 2003b, ‘Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport’, Tellus 55B, 488–497.

    Article  Google Scholar 

  • Takahashi, T., Suntherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R.H., Feely, R.A., Sabine, C., Olafsson, J. and Nojiri, Y.: 2002, ‘Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effect’, Deep-Sea Research II 49, 1601–1623.

    Article  Google Scholar 

  • Tans, P.P, Conway, T.J. and Nakazawa, T.: 1989, ‘Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model’, J. Geophys. Res. 94, 5151–5172.

    Article  Google Scholar 

  • Tans, P.P., Fung I.Y. and Takahashi, T.: 1990, ‘Observational constraints in the global atmospheric CO2 budget’, Science 247, 1431–1438.

    Article  Google Scholar 

  • Zhuang, Q., McGuire, A.D., Melillo, J.M., Clein, J.S., Dargaville, R.J., Kicklighter, D.W., Myneni, R.B., Dong, J., Romanovsky, V.E., Harden, J. and Hobbie, J.E.: 2003, Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics’, Tellus 55B, 751–776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Dargaville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dargaville, R., Baker, D., Rödenbeck, C. et al. Estimating High Latitude Carbon Fluxes With Inversions Of Atmospheric CO2 . Mitig Adapt Strat Glob Change 11, 769–782 (2006). https://doi.org/10.1007/s11027-005-9018-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-005-9018-1

Keywords:

Navigation