Skip to main content

Advertisement

Log in

A new way of carbon accounting emphasises the crucial role of sustainable timber use for successful carbon mitigation strategies

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

The roles of forest management and the use of timber for energy in the global carbon cycle are discussed. Recent studies assert that past forest management has been accelerating climate change, for example in Europe. In addition, the increasing tendency to burn timber is an international concern. Here, we show a new way of carbon accounting considering the use of timber as a carbon neutral transfer into a pool of products. This approach underlines the robust, positive carbon mitigation effects of sustainable timber harvesting. Applying this new perspective, sustainable timber use can be interpreted not as a removal but a prevention of carbon being converted within the cycle of growth and respiration. Identifying timber use as a prevention rather than a removal leads to the understanding of timber use as being no source of carbon emissions of forests but as a carbon neutral transfer to the product pool. Subsequently, used timber will then contribute to carbon emissions from the pool of forest products in the future. Therefore, timber use contributes to carbon mitigation by providing a substantial delay of emissions. In a second step, the carbon model is applied to results of a previous study in which different timber price scenarios were used to predict timber harvests in Bavarian forests (Germany). Thus, the influence of the economic dimension “timber price” on the ecological dimension carbon sequestration was derived. It also shows that these effects are stable, even if an increasing tendency of burning timber products for producing energy is simulated. Linking an economic optimization to a biophysical model for carbon mitigation shows how the impact of management decisions on the environment can be derived. Overall, a sustainably managed system of forests and forest products contributes to carbon mitigation in a positive, stable way, even if the prices for (energy) wood rise substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This is an effect of our definition and contrary to the everyday meaning of the phrase “fuelwood is carbon neutral”. In this statement the forest (the carbon inflow) and the product (the carbon outflow) is subsumed in the term “energy wood”. Here, the product is strictly separated from the forest. As the product can only emit carbon (dead material is not able to sequester carbon) it not carbon neutral in our way of thinking. Of course, the whole system of forests and forests might act as carbon neutral.

  2. The term sink is used in the sense of a positive net carbon flux into a system throughout the text.

References

  • Assmann E (1953) Bestockungsdichte und Holzerzeugung. Forstwissenschaftliches Centralblatt 72(3–4):69–101. doi:10.1007/BF01832159

    Article  Google Scholar 

  • Bakam I, Balana BB, Matthews R (2012) Cost-effectiveness analysis of policy instruments for greenhouse gas emission mitigation in the agricultural sector. J Environ Manag 112:33–44. doi:10.1016/j.jenvman.2012.07.001

    Article  Google Scholar 

  • Baskent EZ, Keles S (2009) Developing alternative forest management planning strategies incorporating timber, water and carbon values: an examination of their interactions. Environ Model Assess 14(4):467–480. doi:10.1007/s10666-008-9148-4

    Article  Google Scholar 

  • Benítez PC, McCallum I, Obersteiner M, Yamagata Y (2007) Global potential for carbon sequestration: geographical distribution, country risk and policy implications. Ecol Econ 60(3):572–583. doi:10.1016/j.ecolecon.2005.12.015

    Article  Google Scholar 

  • Block J, Gauer J (2012) Waldbodenzustand in Rheinland-Pfalz, Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, vol 70. Zentralstelle der Forstverwaltung Rheinland-Pfalz, Trippstadt

  • Braun M, Winner G, Schwarzbauer P, Stern T (2016) Apparent half-life-dynamics of harvested wood products (HWPs) in Austria: development and analysis of weighted time-series for 2002 to 2011. Forest Policy Econ 63:28–34. doi:10.1016/j.forpol.2015.11.008

    Article  Google Scholar 

  • Brown S, Lim B, Schlamadinger B (1998) Evaluating approaches for estimating net emissions of carbon dioxide from forest harvesting and wood products: meeting report, Dakar, Senega

  • Burschel P, Weber M (2001) Wald - Forstwirtschaft - Holzindustrie: Zentrale Größen der Klimapolitik. Forstarchiv 72:75–85

    Google Scholar 

  • Burschel P, Kürsten E, Larson BC (1993) Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt: Eine Betrachtung für die Bundesrepublik Deutschland, Forstliche Forschungsberichte München , vol 126

  • Cacho OJ, Lipper L, Moss J (2013) Transaction costs of carbon offset projects: a comparative study. Ecol Econ 88:232–243. doi:10.1016/j.ecolecon.2012.12.008

    Article  Google Scholar 

  • Chen J, Colombo SJ, Ter-Mikaelian MT, Heath LS (2014) Carbon profile of the managed forest sector in Canada in the 20th century: sink or source? Environ Sci Technol 48(16):9859–9866. doi:10.1021/es5005957

    Article  Google Scholar 

  • Cunha-e Sá M A, Rosa R, Costa-Duarte C (2013) Natural carbon capture and storage (NCCS): forests, land use and carbon accounting. Resour Energy Econ 35(2):148–170. doi:10.1016/j.reseneeco.2012.12.003. http://www.sciencedirect.com/science/article/pii/S0928765512000759

    Article  Google Scholar 

  • Diaz-Balteiro L, Romero C (2003) Forest management optimisation models when carbon captured is considered: a goal programming approach. For Ecol Manag 174 (1–3):447–457. doi:10.1016/S0378-1127(02)00075-0

    Article  Google Scholar 

  • Dieter M, Elsasser P (2002) Carbon stocks and carbon stock changes in the tree biomass of Germany’s forests. Forstwissenschaftliches Centralblatt 121(4):195–210. doi:10.1046/j.1439-0337.2002.02030.x

    Article  Google Scholar 

  • Donlan J, Skog K, Byrne KA (2012) Carbon storage in harvested wood products for Ireland 1961–2009. Biomass Bioenergy 46:731–738. doi:10.1016/j.biombioe.2012.06.018

    Article  Google Scholar 

  • Dymond CC (2012) Forest carbon in North America: annual storage and emissions from British Columbia’s harvest, 1965–2065. Carbon Balance Manage 7(1):8. doi:10.1186/1750-0680-7-8

    Article  Google Scholar 

  • Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) (2006) IPCC guidelines for national greenhouse gas inventories: prepared by the national greenhouse gas inventories programme. Institute for Global Environmental Strategies, Hayama

  • EIA (2011) International energy outlook. DOE/EIA.0484(2011), U.S. Energy Information Administration

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. UTB, Ulmer, Stuttgart

    Google Scholar 

  • Ellison D, Lundblad M, Petersson H (2011) Carbon accounting and the climate politics of forestry. Environ Sci Pol 14(8):1062–1078. doi:10.1016/j.envsci.2011.07.001

    Article  Google Scholar 

  • Ford-Robertson JB (2003) Implicatons of harvested wood products accounting: analysis of issues raised by parties to the UNFCCC and development of a simple decay approach, MAF technical paper, vol 2003/5. Ministry of Agriculture and Forestry, Wellington

  • Friedrich S, Zormaier F, Dietz E, Hammerl R, Borchert H, Egner JP (2012) Energieholzmarkt Bayern 2010, LWF-Wissen, vol 70. Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising

  • Green C, Avitabile V, Farrell EP, Byrne KA (2006) Reporting harvested wood products in national greenhouse gas inventories: implications for Ireland. Biomass Bioenergy 30(2):105–114. doi:10.1016/j.biombioe.2005.11.001

    Article  Google Scholar 

  • Harmon M, Harmon J, Ferrell W, Brooks D (1996) Modeling carbon stores in Oregon and Washington forest products: 1900–1992. Clim Chang 33(4):521–550. doi:10.1007/BF00141703

    Article  Google Scholar 

  • Härtl F (2014) YAFO Wiki. http://www.forestdss.org/wiki/index.php?title=YAFO

  • Härtl F, Knoke T (2014) The influence of the oil price on timber supply. Forest Policy Econ 39:32–42. doi:10.1016/j.forpol.2013.11.001

    Article  Google Scholar 

  • Härtl F, Hahn A, Knoke T (2013) Risk-sensitive planning support for forest enterprises: the YAFO model. Comput Electron Agric 94:58–70. doi:10.1016/j.compag.2013.03.004

    Article  Google Scholar 

  • Härtl FH (2015) Der Einfluss des Holzpreises auf die Konkurrenz zwischen stofflicher und thermischer Holzverwertung. Ein forstbetrieblicher Planungsansatz unter Berücksichtigung von Risikoaspekten: Dissertation. Holz- und Forstwirtschaft. Shaker, Aachen

    Google Scholar 

  • Hennigar CR, MacLean DA, Amos-Binks LJ (2008) A novel approach to optimize management strategies for carbon stored in both forests and wood products. For Ecol Manag 256(4):786–797. doi:10.1016/j.foreco.2008.05.037

    Article  Google Scholar 

  • Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Fukuda M, Troxler T (eds) (2014) 2013 revised supplementary methods and good practice guidance arising from the kyoto protocol. Intergovernmental Panel on Climate Change

  • Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40(3):429–451

    Google Scholar 

  • Höllerl S, Bork J (2013) Die Kohlenstoffspeicherung von bewirtschafteten und unbewirtschafteten Fichtenbeständen unter Berücksichtigung von Ausfallrisiken – Aussagen nicht nur über Bestände der montanen Zone: Carbon storage of managed and unmanaged spruce stands (Picea abies [L. Karst.]) considering hazard risks – conclusions not only on stands of the montane zone. Forstarchiv 84 (2):52–64

    Google Scholar 

  • Höllerl S, Neuner M (2011) Kohlenstoffbilanz des Wald- und Holzsektors bewirtschafteter und unbewirtschafteter Bergmischwälder der Bayerischen Alpen: A carbon balance of the forest- and wood sector in managed and unmanaged mixed mountain forests in the Bavarian Alps. Forstarchiv 82(4):142–154

    Google Scholar 

  • IMF (2011) World economic outlook - April 2011: tensions from the two-speed recovery, unemployment, commodities and capital flows. International Monetary Fund, Washington

    Google Scholar 

  • ITTO (2006) Status of tropical forest management. Yokohama. http://www.itto.int/en/sfm/

  • Johnston C M, van Kooten G C (2015) Back to the past: burning wood to save the globe. Ecol Econ 120:185–193. doi:10.1016/j.ecolecon.2015.10.008

    Article  Google Scholar 

  • Jorion P (1997) Value at risk: the new benchmark for controlling market risk. Irwin, Chicago

    Google Scholar 

  • Karjalainen T, Kellomäki S, Pussinen A (1994) Role of wood-based products in absorbing atmospheric carbon. Silva Fennica 28(2):67–80

    Article  Google Scholar 

  • Kayo C, Tsunetsugu Y, Tonosaki M (2015) Climate change mitigation effect of harvested wood products in regions of Japan. Carbon Balance Manage 10(1). doi:10.1186/s13021-015-0036-3

  • Kesicki F, Remme U, Blesl M, Fahl U, Voß A (2009) The third oil price surge—What is different this time and what are possible future oil price developments?, Arbeitsbericht / Working paper, vol 7. Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung, Stuttgart

  • Klein D, Schulz C (2012) Die Kohlenstoffbilanz der bayerischen Forst- und Holzwirtschaft: Abschlussbericht

  • Klein D, Höllerl S, Blaschke M, Schulz C (2013) The contribution of managed and unmanaged forests to climate change mitigation—a model approach at stand level for the main tree species in Bavaria. Forests 4(1):43–69

    Article  Google Scholar 

  • Knoke T, Weber M (2006) Expanding carbon stocks in existing forests—a methodological approach for cost appraisal at the enterprise level. Mitig Adapt Strateg Glob Chang 11(3):579–605. doi:10.1007/s11027-006-1051-1

    Article  Google Scholar 

  • Knoke T, Schneider T, Hahn A, Griess VC, Rößiger J (2012) Forstbetriebsplanung als Entscheidungshilfe, 1st edn. Ulmer, Stuttgart

    Google Scholar 

  • Köhl M (2013) Klimaschutz. AFZ-Der Wald 17:34–36

  • Köhl M, Lasco R, Cifuentes M, Jonsson ö, Korhonen KT, Mundhenk P, de Jesus Navar J, Stinson G (2015) Changes in forest production, biomass and carbon: results from the 2015 UN FAO global forest resource assessment. For Ecol Manag 352:21–34. doi:10.1016/j.foreco.2015.05.036

    Article  Google Scholar 

  • Köthke M, Dieter M (2010) Der Einfluss von Systemen zur Vergütung der C-Speicherleistung auf die Waldbewirtschaftung: the effects of reward schemes for C-sequestration services on forest management. Forst und Holz 65(4):20–25

    Google Scholar 

  • Krewitt W, Schlomann B (2006) Externe Kosten der Stromerzeugung aus erneuerbaren Energien im Vergleich zur Stromerzeugung aus fossilen Energieträgern. Gutachten im Rahmen von Beratungsleistungen für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

    Google Scholar 

  • Lamers P, Junginger M, Dymond CC, Faaij A (2014) Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy 6(1):44–60. doi:10.1111/gcbb.12055

    Article  Google Scholar 

  • Lemprière T C, Kurz W A, Hogg E H, Schmoll C, Rampley G J, Yemshanov D, McKenney D W, Gilsenan R, Beatch A, Blain D, Bhatti J S, Krcmar E (2013) Canadian boreal forests and climate change mitigation. Environ Rev 21(4):293–321. doi:10.1139/er-2013-0039

    Article  Google Scholar 

  • Lippke B, Oneil E, Harrison R, Skog K, Gustavsson L, Sathre R (2011) Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns. Carbon Manage 2(3):303–333. doi:10.4155/cmt.11.24

    Article  Google Scholar 

  • Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J For Res 31(11):2004–2013. doi:10.1139/x01-140

    Article  Google Scholar 

  • Lun F, Li W, Liu Y (2012) Complete forest carbon cycle and budget in China, 1999–2008. For Ecol Manag 264(0):81–89. doi:10.1016/j.foreco.2011.10.004. http://www.sciencedirect.com/science/article/pii/S0378112711006062

    Article  Google Scholar 

  • Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215. doi:10.1038/nature07276

    Article  Google Scholar 

  • Mantau U (2012) Standorte der Holzwirtschaft, Holzrohstoffmonitoring, Holzwerkstoffindustrie – Kapazitätsentwicklung und Holzrohstoffnutzung im Jahr 2010

  • Marland E, Stellar K, Marland G (2010) A distributed approach to accounting for carbon in wood products. Mitig Adapt Strateg Glob Chang 15(1):71–91. doi:10.1007/s11027-009-9205-6

    Article  Google Scholar 

  • Möhring B, Rüping U (2008) A concept for the calculation of financial losses when changing the forest management strategy. Forest Policy Econ 10(3):98–107. doi:10.1016/j.forpol.2007.06.004. http://www.sciencedirect.com/science/article/pii/S1389934107000548

    Article  Google Scholar 

  • Moura Costa P, Wilson C (2000) An equivalence factor between CO2 avoided emissions and sequestration – description and applications in forestry. Mitig Adapt Strateg Glob Chang 5(1):51–60. doi:10.1023/A:1009697625521

    Article  Google Scholar 

  • Nabuurs G J, Lindner M, Verkerk P J, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Chang 3(9):792–796. doi:10.1038/NCLIMATE1853

    Article  Google Scholar 

  • Naudts K, Chen Y, McGrath M J, Ryder J, Valade A, Otto J, Luyssaert S (2016) Europe’s forest management did not mitigate climate warming. Science 351(6273):597–600. doi:10.1126/science.aad7270

    Article  Google Scholar 

  • OECD/IEA (2010) World Energy Outlook 2010, 1st edn. World energy outlook, OECD / International Energy Agency, Paris. http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10435936

    Google Scholar 

  • Panek N (2011) Deutschlands internationale Verantwortung: Rotbuchenwälder im Verbund schützen: Gutachten im Auftrag von Greenpeace e. V

  • Penman J (2003) Good practice guidance for land use, land-use change and forestry. Published by the Institute for Global Environmental Strategies for the IPCC, Hayama and Kanagawa [Japan]

  • Perez-Garcia J, Lippke B, Comnick J, Manriquez C (2005) An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci 37:140–148. http://swst.metapress.com/content/V361873872VK17W3

    Google Scholar 

  • Pilli R, Fiorese G, Grassi G (2015) EU mitigation potential of harvested wood products. Carbon Balance Manage 10(1). doi:10.1186/s13021-015-0016-7

  • Pingoud K, Savolainen I, Seppälä H (1996) Greenhouse impact of the finnish forest sector including forest products and waste management. Ambio 25(5):318–326. doi:10.2307/4314485. http://www.jstor.org/stable/4314485

    Google Scholar 

  • Pingoud K, Pohjola J, Valsta L (2010) Assessing the integrated climatic impacts of forestry and wood products. Silva Fennica 44(1):155–175

    Article  Google Scholar 

  • Pretzsch H (2004) Gesetzmäßigkeit zwischen Bestandesdichte und Zuwachs. Lösungsansatz am Beispiel von Reinbeständen aus Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvatica L.) Allgemeine Forst- und Jagdzeitung 175(12):225–234

    Google Scholar 

  • Profft I, Mund M, Weber G E, Weller E, Schulze E D (2009) Forest management and carbon sequestration in wood products. Eur J For Res 128(4):399–413. doi:10.1007/s10342-009-0283-5

    Article  Google Scholar 

  • Raši R, Cienciala E, Priwitzer T, Palán S, Pavlenda P (2015) Carbon balance in harvested wood products in Slovakia. Forestry Journal 61(2):101–106. doi:10.1515/forj-2015-0018

    Google Scholar 

  • Rock J, Bolte A (2011) Auswirkungen der Waldbewirtschaftung 2002 bis 2008 auf die CO2-Bilanz. AFZ-Der Wald (15):22–24

  • Rock J, Badeck F W, Harmon M E (2008) Estimating decomposition rate constants for European tree species from literature sources. Eur J For Res 127 (4):301–313. doi:10.1007/s10342-008-0206-x

    Article  Google Scholar 

  • Rüter S (2011) Welchen Beitrag leisten Holzprodukte zur CO2-Bilanz? AFZ-Der Wald (15):15–18

  • Sathre R, O’Connor J (2010a) A synthesis of research on wood products & greenhouse gas impacts, 2nd edn. FPInnovations, Vancouver

  • Sathre R, O’Connor J (2010b) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Pol 13(2):104–114. 10.1016/j.envsci.2009.12.005. http://www.sciencedirect.com/science/article/pii/S1462901109001804

  • Scheffer F, Schachtschabel P, Blume H P, Brümmer G W, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B M (2010) Lehrbuch der Bodenkunde, 16th edn. Spektrum Lehrbuch, Spektrum, Akad. Verlag, Heidelberg and Berlin

    Google Scholar 

  • Schöne D, Schulte A (1999) Forstwirtschaft nach Kyoto - Ansätze zur Quantifizierung und betrieblichen Nutzung von Kohlenstoffsenken. Forstarchiv 70 (5):167–176

    Google Scholar 

  • Skog K E, Nicholson G A (1998) Carbon cycling through wood products: the role of wood and paper products in carbon sequestration. For Prod J 48(7):75. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=1050989&site=ehost-live

  • Smith JE, Heath LS, Skog KE, Birdsey RA (2006) Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States: Gen. Tech. Rep. NE-343

  • Sohngen B, Mendelsohn R (2003) An optimal control model of forest carbon sequestration. Am J Agric Econ 85(2):448–457. doi:10.1111/1467-8276.00133

    Article  Google Scholar 

  • Sovacool B K (2011) The policy challenges of tradable credits: a critical review of eight markets. Energy Policy 39(2):575–585. doi:10.1016/j.enpol.2010.10.029

    Article  Google Scholar 

  • Stambaugh F (1996) Risk and value at risk. Eur Manag J 14 (6):612–621. doi:10.1016/S0263-2373(96)00057-6 10.1016/S0263-2373(96)00057-6. http://www.sciencedirect.com/science/article/pii/S0263237396000576

    Article  Google Scholar 

  • Tahvonen O (1995) Net national emissions, CO2 taxation and the role of forestry. Resour Energy Econ 17(4):307–315. doi:10.1016/0928-7655(95)00002-X. http://www.sciencedirect.com/science/article/pii/092876559500002X

    Article  Google Scholar 

  • UBA (ed) (2012) Schätzung der Umweltkosten in den Bereichen Energie und Verkehr. Empfehlungen des Umweltbundesamtes, Dessau

  • UBA (ed) (2013) Submissions under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2013. National Inventory Report for the German Greenhouse Gas Inventory 1990–2011, Dessau

  • UNFCCC (2007) Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007: part two: action taken by the conference of the parties at its thirteenth session: decisions adopted by the conference of the parties

  • van Kooten GC, Binkley CS, Delcourt G (1995) Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am J Agric Econ 77(2):365–374. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=9506150080&site=ehost-live

  • VDP (2012) Papier Kompass 2012

  • Winjum J K, Brown S, Schlamadinger B (1998) Forest harvests and wood products: sources and sinks of atmospheric carbon dioxide. For Sci 44(2):272–284. http://www.ingentaconnect.com/content/saf/fs/1998/00000044/00000002/art00012

    Google Scholar 

  • Wirth C, Schulze ED, Schwalbe G, Tomczyk S, Weber G, Weller E (2004a) Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens: Abschlussbericht zur 1. Phase des BMBF-Projektes Modelluntersuchung zur Umsetzung des Kyoto-Protokolls

  • Wirth C, Schumacher J, Schulze E D (2004b) Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24(2):121–139

  • Wutzler T, Wirth C, Schumacher J (2008) Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Can J For Res 38(6):1661–1675. doi:10.1139/X07-194

    Article  Google Scholar 

  • Zell J (2008) Methoden für die Ermittlung, Modellierung und Prognose der Kohlenstoffspeicherung in Wäldern auf Grundlage permanenter Großrauminventuren. Fakultät für Forst- und Umweltwissenchaften, Freiburg

    Google Scholar 

Download references

Acknowledgments

The study presented here is part of the project G33 “Competition for wood: Ecological, social and economic effects of the material and energy utilization of wood” funded by the Bavarian State Ministry of Food, Agriculture and Forestry, and as project 22009411 by the German Federal Ministry of Food, Agriculture and Consumer Protection. The authors wish to thank Elizabeth Gosling for the language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian H. Härtl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härtl, F.H., Höllerl, S. & Knoke, T. A new way of carbon accounting emphasises the crucial role of sustainable timber use for successful carbon mitigation strategies. Mitig Adapt Strateg Glob Change 22, 1163–1192 (2017). https://doi.org/10.1007/s11027-016-9720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-016-9720-1

Keywords

Navigation