Skip to main content

Advertisement

Log in

Synthesis of 5-alkylated barbituric acids and 3-alkylated indoles via microwave-assisted three-component reactions in solvent-free conditions using Hantzsch 1,4-dihydropyridines as reducing agents

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Reaction of barbituric acids with aldehydes and dihydropyridines in one pot under microwave (MW) irradiation in the absence of solvent, affords 55–82% of the 5-benzylated barbituric acids. Use of alkyl nitriles or barbituric acids with indole-3-aldehyde and dihydropyridine (DHP) afforded 3-alkylated indoles in 57–76 % yield. In each case DHPs are converted to pyridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodman LS, Gilman A (1991) The pharmacological basis of therapeutics. Mc Graw-Hill, New Delhi, pp 358–360

    Google Scholar 

  2. Andrews G (1976) Medical pharmacology. The CV Mosby Co., Saint Louis, MO, pp 243–250

    Google Scholar 

  3. Foye WO (1989) Principles of medicinal chemistry. Lea & Febiger, Pennsylvania, PA, pp 143–237

    Google Scholar 

  4. Guerin DJ, Mazeas D, Musale MS, Naguib FNM, Safarjalani ONA, Kouni MH, Panzica RP (1999) Uridine phosphorylase inhibitors: chemical modification of benzyloxybenzyl barbituric acid and its effects on UrdPase inhibition. Bioorg Med Chem Lett 9: 1477–1480. doi:10.1016/S0960-894X(99)00238-3

    Article  PubMed  CAS  Google Scholar 

  5. Fisher E, Moring JR (1903) Ueber eine neue Klasse von Schlafmitteln. Ther Ggw 44: 97–105

    Google Scholar 

  6. Doran WJ (1959) Barbituric acid hypnotics. Med Chem 4: 164–167

    Google Scholar 

  7. Bobranski B (1977) Progress in chemistry of barbituric acid. Wiad Chem 31: 231–278

    CAS  Google Scholar 

  8. Senda S, Izumi H, Fujimura H (1967) Uracil derivatives and related compounds. VI. Derivatives of 5-alkyl-2,4,6-trioxoperhydropyrimidine as anti-inflammatory agents. Arznein Forsch 17: 1519–1523

    CAS  Google Scholar 

  9. Meissuer JWG, Vander Lean AC, Pandit UK (1994) Reduction of 5-arylidenebarbiturate derivatives by thiols. Tetrahedron Lett 35: 2757–2760. doi:10.1016/S0040-4039(00)77025-0

    Article  Google Scholar 

  10. Tanaka K, Chen X, Yoneda F (1988) Oxidation of thiol with 5-arylidene-1,3-dimethylbarbituric acid: application to synthesis of unsymmetrical disulfide. Tetrahedron 44: 3241–3249. doi:10.1016/S0040-4020(01)85957-3

    Article  CAS  Google Scholar 

  11. Shiri M, Zolfigol MA, Kruger HG, Tanbakouchain Z (2010) Bis- and trisindolylmethanes (BIMs and TIMs). Chem Rev 110: 2250–2293. doi:10.1021/cr900195a

    Article  PubMed  CAS  Google Scholar 

  12. Walter DJ, Peter J, Basahammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76–79. doi:10.1126/science.1078197

    Article  Google Scholar 

  13. Komagata D, Sawa R, Kinoshita N, Imada C, Sawa T, Naganawa H, Hamada M, Okami Y, Takeuchi T (1992) Isolation of glutathione- S-transferase inhibitors. J Antibiot 45: 1681–1683

    Article  PubMed  CAS  Google Scholar 

  14. Santamaria A, Cabezas N, Avendano C (1999) Synthesis of tryptophan-dehydrobutyrine diketopiperazines and analogues. Tetrahedron 55: 1173–1186. doi:10.1016/S0040-4020(98)01095-3

    Article  CAS  Google Scholar 

  15. Wagger J, Bevk D, Meden A, Svete J, Stanovnik B (2006) Enaminone-based synthesis of dipodazine derivatives. Helv Chim Acta 89: 240–248. doi:10.1002/hlca.200690026

    Article  CAS  Google Scholar 

  16. Meyer H (1982) Chapter 8. Antianginal and Anti-ischemic Agents. Annu Rep Med Chem 17: 71–77. doi:10.1016/S0065-7743(08)60490-X

    Article  CAS  Google Scholar 

  17. Janis RA, Triggle DJ (1983) New developments in calcium ion channel antagonists. J Med Chem 26: 775–785. doi:10.1021/jm00360a001

    Article  PubMed  CAS  Google Scholar 

  18. Wehinger E, Gross R (1986) Chapter 9. Calcium modulators. Annu Rep Med Chem 21: 85–94. doi:10.1016/S0065-7743(08)61119-7

    Article  CAS  Google Scholar 

  19. Toniolo R, Narda FD, Bontempelli G, Ursini F (2000) An electroanalytical investigation on the redox properties of lacidipine supporting its anti-oxidant effect. Bioelectrochem 51: 193–200. doi:10.1016/S0302-4598(00)00073-8

    Article  CAS  Google Scholar 

  20. Guengerich FP, Brain WR, Iwasaki M, Sari MA, Berntsson P (1991) Oxidation of dihydropyridine calcium channel blockers and analogs by human liver cytochrome P-450 IIIA4. J Med Chem 34: 1838–1844. doi:10.1021/jm00110a012

    Article  PubMed  CAS  Google Scholar 

  21. The Merck Index (2001) 13th ed. Merck Research Laboratories: New Jersy, NJ, p 6370

  22. Zhu BXQ, Zhao J, Cheng JP (2000) Mechanisms of the oxidations of NAD(P)H model Hantzsch 1,4-dihydropyridines by nitric oxide and its donor N-Methyl-N-nitrosotoluene-p-sulfonamide. J Org Chem 65: 8158–8163. doi:10.1021/jo000484h

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, Wu LZ, Zhou L, Han X, Yang LQZ, Zhang P, Tung CH (2004) Photocatalytic hydrogen production from Hantzsch 1,4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. J Am Chem Soc 126: 3440–3441. doi:10.1021/ja037631o

    Article  PubMed  CAS  Google Scholar 

  24. Nasr-Esfahani M, Moghadam M, Tangesta-ninejad S, Mirkhani V, Momeni AR (2006) Rapid and efficient oxidation of Hantzsch 1,4-dihydropyridines with sodium periodate catalyzed by manganese (III) Schiff base complexes. Bioorg Med Chem 14: 2720–2724. doi:10.1016/j.bmc.2005.11.051

    Article  PubMed  CAS  Google Scholar 

  25. Heravi MM, Derkvand F, Pour SH, Bakhitari K, Bamoharram FF, Oskooie HA (2007) Oxidative aromatization of Hantzsch 1,4-dihydropyridines in the presence of mixed-addenda vanadomolybdophosphate heteropolyacid, H6PMo9V3O40. Bioorg Med Chem Lett 17: 3305–3309. doi:10.1016/j.bmcl.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  26. Fang X, Liu YC, Li C (2007) 9-Phenyl-10-methylacridinium: a highly efficient and reusable organocatalyst for mild aromatization of 1,4-dihydropyridines by molecular oxygen. J Org Chem 72: 8608–8610. doi:10.1021/jo701796n

    Article  PubMed  CAS  Google Scholar 

  27. Litvic MF, Litvic M, Vinkovic V (2008) An efficient, metal-free, room temperature aromatization of Hantzsch-1,4-dihydropyridines with urea–hydrogen peroxide adduct, catalyzed by molecular iodine. Tetrahedron 64: 5649–5656. doi:10.1016/j.tet.2008.04.040

    Article  Google Scholar 

  28. Tanaka T, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100: 1025–1074. doi:10.1021/cr940089p

    Article  PubMed  CAS  Google Scholar 

  29. Pourashraf M, Delair P, Rasmaissen MO, Greene AE (2000) Highly enantioselective approach to indolizidines: preparation of (+)-(1S,8aS)-1-hydroxyindolizidine and (−)slaframine. J Org Chem 65: 6966–6972. doi:10.1021/jo0005621

    Article  PubMed  CAS  Google Scholar 

  30. Cossy J, Willis C, Bellosta V, Jalmes LS (2002) Enantioselective sllyltitanation. Synthesis of (−)slaframine. Synthesis 7:951–957. doi:10.1055/s-2002-28505

    Google Scholar 

  31. Weber L, Illegen K, Almstetter M (1999) Discovery of new multi component reactions with combinatorial methods. Synlett 29: 366–374

    Article  Google Scholar 

  32. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Rev 29: 123–131. doi:10.1021/ar9502083

    Article  CAS  Google Scholar 

  33. Baruah B, Bhuyan PJ (2009) Synthesis of some complex pyrano[2,3-b]- and pyrido[2,3-b]quinolines from simple acetanilides via intramolecular domino hetero Diels–Alder reactions of 1-oxa-1,3-butadienes in aqueous medium. Tetrahedron 65: 7099–7104. doi:10.1016/j.tet.2009.06.036

    Article  CAS  Google Scholar 

  34. Baruah B, Bhuyan PJ (2009) Tertiary amine effect: synthesis of some novel spirosubstituted pyrido[2,3-d]pyrimidines. Tetrahedron Lett 50: 243–245. doi:10.1016/j.tetlet.2008.10.125

    Article  CAS  Google Scholar 

  35. Deb ML, Bhuyan PJ (2008) An efficient method for the synthesis of indolo[3,2-b]-carbazoles from 3,3′-bis(indolyl)methanes catalyzed by molecular iodine. Synlett 3:325–328

    Google Scholar 

  36. Deb ML, Bhuyan PJ (2008) A novel and efficient method for the synthesis of unsymmetrical diindolylmethanes and heterocyclic(indolyl)alkanes. Synthesis 18:2891–2898. doi:10.1055/s-2008-1067217

    Google Scholar 

  37. Deb ML, Baruah B, Bhuyan PJ (2008) A facile synthesis of 6,12-disubstituted 5, 7-dihydroindolo[2,3-b]carbazoles from the reaction of 1H-indole & catalysed by molecular iodine. Synthesis 2:286–292. doi:10.1055/s-2008-1000849

    Google Scholar 

  38. Yamada K, Izumi T, Yamada F, Somei M (2005) Solvent effect on the reaction of 1-methoxy-3-(2-nitrovinyl)indole with nucleophiles. Heterocycles 66: 583–594. doi:10.3987/COM-05-S(K)33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak J. Bhuyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruah, B., Naidu, P.S., Borah, P. et al. Synthesis of 5-alkylated barbituric acids and 3-alkylated indoles via microwave-assisted three-component reactions in solvent-free conditions using Hantzsch 1,4-dihydropyridines as reducing agents. Mol Divers 16, 291–298 (2012). https://doi.org/10.1007/s11030-012-9359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9359-0

Keywords

Navigation