Skip to main content
Log in

Aqueous hydrotrope: an efficient and reusable medium for a green one-pot, diversity-oriented synthesis of quinazolinone derivatives

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A library of quinazolinones was prepared by the one-pot three-component reaction of isatoic anhydride, ammonium salts/amines, and various electrophiles using aqueous hydrotropic solution as an efficient, economical, reusable, and green medium giving good to excellent yields of products in very short time. The method offers a versatile way for the development of diversity-oriented synthesis of quinazolinones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3

Similar content being viewed by others

References

  1. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312. doi:10.1039/B918763B

    Article  CAS  PubMed  Google Scholar 

  2. Li CJ, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82. doi:10.1039/B507207G

    Article  PubMed  Google Scholar 

  3. Li CJ (2005) Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem Rev 105:3095–3165. doi:10.1021/cr030009u

    Article  CAS  PubMed  Google Scholar 

  4. Vemula VR, Lagishetty V, Lingala S (2010) Solubility enhancement techniques. Int J Pharm Sci Rev Res 5:41–51

    CAS  Google Scholar 

  5. Neuberg C (1916) Hydrotropic phenomena. Biochem Z 76:107–176

    CAS  Google Scholar 

  6. McKee RH (1946) Use of hydrotropic solutions in industry. Ind Eng Chem 38:382–384. doi:10.1021/ie50436a012

    Article  CAS  Google Scholar 

  7. Kumbhar A, Kamble S, Jadhav S, Rashinkar G, Salunkhe R (2012) Silica tethered Pd-DABCO complex: an efficient and reusable catalyst for Suzuki-Miyaura reaction. Catal Lett 142:1388–1396. doi:10.1007/s10562-012-0912-3

    Article  CAS  Google Scholar 

  8. Kurane R, Jadhav J, Khanapure S, Salunkhe R, Rashinkar G (2013) Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines. Green Chem 15:1849–1856. doi:10.1039/c3gc40592c

    Article  CAS  Google Scholar 

  9. Hayakawa M, Kaizawa H, Moritomo H, Koizumi T, Ohishi T, Okada M, Ohta M, Tsukamoto S, Parker P, Workman P, Waterfield M (2006) Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110\(\upalpha \) inhibitors. Bioorg Med Chem 14:6847–6858. doi:10.1016/j.bmc.2006.06.046

    Article  CAS  PubMed  Google Scholar 

  10. Noolvi M, Patel H, Bhardwaj V, Chauhan A (2011) Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives : search for anticancer agent. Eur J Med Chem 46:2327–2346. doi:10.1016/j.ejmech.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  11. Ashton W, Hynes J (1973) Synthesis of 5-substituted quinazolines as potential antimalarial agents. J Med Chem 16:1233–1237. doi:10.1021/jm00269a005

    Article  CAS  PubMed  Google Scholar 

  12. Amir M, Ali I, Hasan M (2013) Design and synthesis of some new quinazolin-4-\((3H)\)-ones as anticonvulsant and antidepressant agents. Arch Pharm Res 36:61–68. doi:10.1007/s12272-013-0004-y

    Article  CAS  PubMed  Google Scholar 

  13. Manhas MS, Hoffman WA, Bose AK (2009) Heterocyclic compounds XII. Quinazoline derivatives as potential antifertility agents. J Heterocycl Chem 16:711–715. doi:10.1002/jhet.5570160420

    Article  Google Scholar 

  14. Kung P, Casper M, Cook K, Wilson-Lingardo L, Risen LM, Vickers TA, Ranken R, Blyn L, Wyatt JR, Cook PD, Ecker DJ (1999) Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents. J Med Chem 42:4705–4713. doi:10.1021/jm9903500

    Article  CAS  PubMed  Google Scholar 

  15. Xu G, Song B, Bhadury PS, Yang S, Zhang P, Jin L, Xue W, Hu D, Lu P (2007) Synthesis and antifungal activity of novel \(s\)-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg Med Chem 15:3768–3774. doi:10.1016/j.bmc.2007.03.037

    Article  CAS  PubMed  Google Scholar 

  16. Potewar TM, Ingale SA, Srinivasan KV (2008) Synthesis of tryptanthrin and deoxyvasicinone by a regioselective lithiation-intramolecular electrophilic reaction approach. ARKIVOC xiv:100–108

    Article  Google Scholar 

  17. Lednicer D, Mitscher LA (1977) The organic chemistry of drug synthesis, vol 1. A Wiley-Interscience Publication, New York

    Google Scholar 

  18. Larksarp C, Alper H (2000) Palladium-catalyzed cyclocarbonylation of \(o\)-iodoanilines with heterocumulenes: regioselective preparation of \(4(3H)\)-quinazolinone derivatives. J Org Chem 65:2773–2777. doi:10.1021/jo991922r

    Article  CAS  PubMed  Google Scholar 

  19. Beccalli EM, Broggini G, Paladino G, Penoni A, Zoni C (2004) Regioselective formation of six- and seven-membered ring by intramolecular Pd-catalyzed amination of \(N\)-allyl-anthranilamides. J Org Chem 69:5627–5630. doi:10.1021/jo0495135

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Ye D, Sun H, Guo D, Wang J, Huang H, Zhang X, Jiang H, Liu H (2009) Microwave-assisted synthesis of quinazolinone derivatives by efficient and rapid iron-catalyzed cyclization in water. Green Chem 11:1881–1888. doi:10.1039/b916124b

    Article  CAS  Google Scholar 

  21. Broggini G, Borsini E, Fasana A, Poli G, Liron F (2012) Transition-metal-catalyzed hydroamination and carboamination reactions of anthranilic allenamides as a route to 2-vinyl- and 2-(\(\upalpha \)-styryl)quinazolin-4-one derivatives. Eur J Org Chem 19:3617–3624. doi:10.1002/ejoc.201200353

    Article  Google Scholar 

  22. Alizadeh A, Ghanbaripour R, Zhu L (2014) An efficient approach to the synthesis of coumarin-bearing 2,3-dihydro-4\((1H)\)-quinazolinone derivatives using a piperidine and molecular iodine dual-catalyst system. Synlett 25:1596–1600. doi:10.1055/s-0033-1341202

    Article  Google Scholar 

  23. He L, Li H, Chen J, Wu X (2014) Recent advances in \(4(3H)\)-quinazolinone syntheses. RSC Adv 4:12065–12077. doi:10.1039/c4ra00351a

    Article  CAS  Google Scholar 

  24. Dabiri M, Salehi P, Otokesh S, Baghbanzadeh M, Kozehgary G, Mohammadi A (2005) Efficient synthesis of mono- and disubstituted 2,3-dihydroquinazolin-4\((1H)\)-ones using KAl\(({\rm SO}_{4})_{2}. {\rm H}_{2}{\rm O}\) as a reusable catalyst in water and ethanol. Tetrahedron Lett 46:6123–6126. doi:10.1016/j.tetlet.2005.06.157

    Article  CAS  Google Scholar 

  25. Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S (2008) Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones in water and under solvent-free conditions. Catal Commun 9:785–788. doi:10.1016/j.catcom.2007.08.019

    Article  CAS  Google Scholar 

  26. Salehi P, Dabiri M, Baghbanzadeh M, Bahramnejad M (2006) One-pot, three-component synthesis of 2,3-dihydro-4\((1H)\)-quinazolinones by Montmorillonite K-10 as an efficient and reusable catalyst. Synth Commun 36:2287–2292. doi:10.1080/00397910600639752

    Article  CAS  Google Scholar 

  27. Dabiri M, Salehi P, Bahramnejad M, Alizadeh M (2010) A practical and versatile approach toward a one-pot synthesis of 2,3-disubstituted \(4(3H)\)-quinazolinones. Monatsh Chem 141:877–881. doi:10.1007/s00706-010-0341-1

    Article  CAS  Google Scholar 

  28. Zhang Z, Lu H, Yang S, Gao J (2010) Synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic \({\rm Fe}_{3}{\rm O}_{4}\) nanoparticles in water. J Comb Chem 12:643–646. doi:10.1021/cc100047j

    Article  CAS  PubMed  Google Scholar 

  29. Yavari I, Beheshti S (2011) ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2,3-disubstituted quinazolin-4\((1H)\)-ones under solvent-free conditions. J Iran Chem Soc 8:1030–1035. doi:10.1007/BF03246559

    Article  CAS  Google Scholar 

  30. Chen J, Wu D, He F, Liu M, Wu H, Ding J, Su W (2008) Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones and quinazolin-4\((3H)\)-ones. Tetrahedron Lett 49:3814–3818. doi:10.1016/j.tetlet.2008.03.127

    Article  CAS  Google Scholar 

  31. Surpur MP, Singh PR, Patil SB, Samant SD (2007) Expeditious one-pot and solvent-free synthesis of dihydroquinazolin-4\((1H)\)-ones in the presence of microwaves. Synth Commun 37:1965–1970. doi:10.1080/00397910701354699

    Article  CAS  Google Scholar 

  32. Wang L, Hu L, Shao J, Yu J, Zhang L (2008) A novel catalyst zinc(II) perfluorooctanoate \([{\rm Zn(PFO)}_{2}]\)-catalyzed three-component one-pot reaction: Synthesis of quinazolinone derivatives in aqueous micellar media. J Fluorine Chem 129:1139–1145. doi:10.1016/j.jfluchem.2008.08.005

    Article  CAS  Google Scholar 

  33. Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58. doi:10.1002/anie.200300626

    Article  Google Scholar 

  34. Posner GH (1986) Multicomponent one-pot annulations forming three to six bonds. Chem Rev 86:831–844. doi:10.1021/cr00075a007

    Article  CAS  Google Scholar 

  35. Estevez V, Villacampa M, Menendez C (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. doi:10.1039/b917644f

    Article  CAS  PubMed  Google Scholar 

  36. Zhu S, Ji S, Su X, Sun C, Liu Y (2008) Facile and efficient synthesis of a new class of bis(3\(^\prime \)-indolyl)pyridine derivatives via one-pot multicomponent reactions. Tetrahedron Lett 49:1777–1781. doi:10.1016/j.tetlet.2008.01.054

  37. Kamble SB, Kumbhar AS, Rashinkar GS, Barge MS, Salunkhe RS (2012) Ultrasound promoted efficient and green synthesis of \(\beta \)-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason Sonochem 19:812–815. doi:10.1016/j.ultsonch.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  38. Barge MS, Kamble SB, Kumbhar AS, Rashinkar GS, Salunkhe RS (2013) Hydrotrope: green and rapid approach for the catalyst-free synthesis of pyrazole derivatives. Monatsh Chem 144:1213–1218. doi:10.1007/s00706-013-0944-4

    Article  CAS  Google Scholar 

  39. Saffar-Teluri A, Bolouk S (2010) One-pot, three-component synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones using \(p\)-toluenesulfonic acid-paraformaldehyde copolymer as an efficient and reusable catalyst. Monatsh Chem 141:1113–1115. doi:10.1007/s00706-010-0376-3

    Article  CAS  Google Scholar 

  40. Darvatkar NB, Bhilare SV, Deorukhkar AR, Raut DG, Salunkhe MM (2010) [bmim]\({\rm HSO}_{4}\): an efficient and reusable catalyst for one-pot three-component synthesis of 2,3-dihydro-4\((1H)\)-quinazolinones. Green Chem Lett Rev 3:301–306. doi:10.1080/17518253.2010.485581

    Article  CAS  Google Scholar 

  41. Karimi-Jaberi Z, Arjmandi R (2011) Acetic acid-promoted, efficient, one-pot synthesis of 2,3-dihydroquinazolinone-4\((1H)\)-ones. Monatsh Chem 142:631–635. doi:10.1007/s00706-011-0494-6

    Article  CAS  Google Scholar 

  42. Mohammadi AA, Rohi H, Soorki AA (2013) Synthesis and In Vitro antibacterial activities of novel 2-aryl-3-(phenylamino)-2,3-dihydroquinazolin-4\((1H)\)-one derivatives. J Heterocycl Chem 50:1129–1133. doi:10.1002/jhet.1075

    CAS  Google Scholar 

  43. Baghbanzadeh M, Salehi P, Dabiri M, Kozehgary G (2006) Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4\((1H)\)-one. Synthesis 2:344–348. doi:10.1055/s-2005-924766

    Google Scholar 

  44. Dabiri M, Salehi P, Mohammadi AA, Baghbanzadeh M (2005) One-pot synthesis of mono- and disubstituted \((3H)\)-quinazolin-4-ones in dry media under microwave irradiation. Synth Commun 35:279–287. doi:10.1081/SCC-200048462

    Article  CAS  Google Scholar 

  45. Khosropour AR, Mohammadpoor-Baltork I, Gharbankhani H (2006) \({\rm Bi(TFA)}_{3}\text{- }{\rm [nbp]}{\rm FeCl}_{4}\): A new, efficient and reusable promoter system for the synthesis of \(4(3H)\)-quinazolinone derivatives. Tetrahedron Lett 47:3561–3564. doi:10.1016/j.tetlet.2006.03.079

    Article  CAS  Google Scholar 

  46. Shokrolahi A, Zali A, Zarei M, Esmaeilpour K (2012) Sulfonated porous carbon (SPC): an efficient and recyclable solid acid catalyst for one-pot three-component synthesis of 2,3-dihydroquinazolin-4\((1H)\)-ones under solvent-free conditions. Iran J Catal 2:91–94

    CAS  Google Scholar 

  47. Furnis B, Hannaford A, Smith P, Tatchell A (1996) Vogel’s textbook of practical organic chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

Authors R. S. S. and A. A. P. thank UGC, New Delhi for financial assistance [F. No. 41-310/2012 (SR)] and for the research fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashri Salunkhe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 23371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A., Barge, M., Rashinkar, G. et al. Aqueous hydrotrope: an efficient and reusable medium for a green one-pot, diversity-oriented synthesis of quinazolinone derivatives. Mol Divers 19, 435–445 (2015). https://doi.org/10.1007/s11030-015-9580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9580-8

Keywords

Navigation