Skip to main content
Log in

Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis(coumarin)s and bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An ethylene glycol promoted catalyst-free practically efficient and sustainable approach has been developed for the synthesis of several benzylidene-bis-(4-hydroxycoumarin)s and 4,\(4^{\prime }\)-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s by the pseudo three-component reaction of an aldehyde with 4-hydroxycoumarin and 3-methyl-1-phenylpyrazol-5-one, respectively. Inexpensive, non-toxic, and easily available ethylene glycol used as the reaction solvent and promoter renders an efficient protocol in terms of catalyst-free reaction conditions, short reaction time, high yield, practical utility, and green approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2

References

  1. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916

    Article  CAS  PubMed  Google Scholar 

  2. Kumar V, Kaur K, Gupta K, Sharma AK (2013) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753. doi:10.1016/j.ejmech.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  3. Madari H, Panda D, Wilson L, Jacobs RS (2003) A unique microtubule stabilizing natural product that is synergistic with taxol. Cancer Res 63:1214–1220

    CAS  PubMed  Google Scholar 

  4. Melrose DG, Oxfd BM, Dreyer B, Cape Town MD, Bentall HH, Lond MB, Baker JBE, Oxfd BM (1955) Elective cardiac arrest. The Lancet 266:21–23. doi:10.1016/S0140-6736(55)93381-X

    Article  Google Scholar 

  5. Kucukguzel SG, Senkardes S (2015) Recent advances in bioactive pyrazoles. Eur J Med Chem 97:786–815. doi:10.1016/j.ejmech.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  6. Wallace JL, Mccafferty DM, Carter L, Mcknight W, Argentieri D (1993) Tissue selective inhibition of prostaglandin synthesis in rat by tepoxalin: anti-inflammatory without gastropathy. Gastroenterology 105:1630–1636

    Article  CAS  PubMed  Google Scholar 

  7. Sashidhara KV, Kumar M, Modukuri RK, Sonkar R, BhatiaG Khanna AK, Rai S, Shukla R (2011) Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg Med Chem Lett 21:4480–4484. doi:10.1016/j.bmcl.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  8. Jung JC, Park OS (2009) Synthetic approaches and biological activities of 4-hydroxycoumarin derivatives. Molecules 14:4790–4803. doi:10.3390/molecules14114790

    Article  CAS  Google Scholar 

  9. Kostova I, Manolov I, Momekov G (2004) Cytotoxic activity of new neodymium (III) complexes of bis-coumarins. Eur J Med Chem 39:765–775. doi:10.1016/j.ejmech.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  10. Zavrsnik D, Muratovic S, Makuc D, Plavec J, Cetina M, Nagl A, Clercq ED, Balzarini J, Mintas M (2011) Benzylidene-bis-(4-hydroxycoumarin) and benzopyrano-coumarin derivatives: synthesis, \({}^{1}\text{ H }/{}^{13}\text{ C }\)-NMR conformational and X-ray crystal structure studies and in vitro antiviral activity evaluations. Molecules 16:6023–6040. doi:10.3390/molecules16076023

    Article  CAS  PubMed  Google Scholar 

  11. Koppula PK, Purohit N (2013) Bis-(1H-2-benzopyran-1-one) derivatives: synthesis and antimicrobial evaluation. J Chem Sci 125:1535–1542

    Article  CAS  Google Scholar 

  12. Fahim AM, Yakout ESM, Nawwar GAE (2014) Facile synthesis of in-vivo insecticidal and antimicrobial evaluation of bis heterocyclic moiety from pet waste. Online J Bio Sci 14:196–208

    Article  Google Scholar 

  13. Diana P, Carbone A, Barraja P, Martorana A, Gia O, DallaVia L, Cirrincione G (2007) 3, 5-Bis(\(3^{\prime }\)-indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: synthesis and antitumor properties. Bioorg Med Chem Lett 17:6134–6137. doi:10.1016/j.bmcl.2007.09.042

    Article  CAS  PubMed  Google Scholar 

  14. El-Sayed MA, Abdel-Aziz NI, Abdel-AzizAA El-Azab AS, ElTahir KE (2012) Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents Part 2. Bioorg Med Chem 20:3306–3316. doi:10.1016/j.bmc.2012.03.044

    Article  CAS  PubMed  Google Scholar 

  15. Khurana JM, Kumar S (2009) Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3, 4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett 50:4125–4127. doi:10.1016/j.tetlet.2009.04.125

    Article  CAS  Google Scholar 

  16. Heravi MM, Nahavandi F, Sadjadi S, Oskooie HA, Bamoharram FF (2010) Efficient synthesis of bis-coumarins using silica-supported preyssler nanoparticles. Synth Commun 40:498–503. doi:10.1080/00397910902985556

    Article  CAS  Google Scholar 

  17. Tabatabaeian K, Heidari H, Khorshidi A, Mamaghani M, Mahmoodi NO (2012) Synthesis of biscoumarin derivatives by the reaction of aldehydes and 4-hydroxycoumarin using ruthenium(III) chloride hydrate as a versatile homogeneous catalyst. J Serb Chem Soc 77:407–413

    Article  CAS  Google Scholar 

  18. Mehrabi H, Abusaidi H (2010) Synthesis of biscoumarin and 3, 4-dihydropyrano[c]chromene derivatives catalyzed by sodium dodecyl sulfate (SDS) in neat water. J Iran Chem Soc 7:890–894

    Article  CAS  Google Scholar 

  19. Davoodnia A (2011) A highly efficient and fast method for the synthesis of biscoumarins using tetrabutylammonium hexatungstate \([\text{ TBA }]_{2}[\text{ W }_{6}\text{ O }_{19}]\) as green and reusable heterogeneous catalyst. Bull Korean Chem Soc 32:4286–4290. doi:10.5012/bkcs.2011.32.12.4286

    Article  CAS  Google Scholar 

  20. Gupta AD, Samanta S, Mondal R, Mallik AK (2012) A convenient, eco-friendly, and efficient method for synthesis of 3,3\(^{\prime }\)-arylmethylene-bis-4-hydroxycoumarins on-water. Bull Korean Chem Soc 33:4239–4242. doi:10.5012/bkcs.2012.33.12.4239

    Article  Google Scholar 

  21. Goudaa MA, Abu-Hashem AA (2012) An eco-friendly procedure for the efficient synthesis of arylidinemalononitriles and 4, \(4^{\prime }\)-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) in aqueous media. Green Chem Lett Rev 5:203–209. doi:10.1080/17518253.2011.613858

    Article  Google Scholar 

  22. Zhou Z, Zhang Y (2014) An efficient and green one-pot three-component synthesis of 4,\(4^{\prime }\)-(arylmethylene)bis(1\(H\)-pyrazol-5-ol)s catalyzed by 2-hydroxy ethylammonium propionate. Green Chem Lett Rev 7:18–23. doi:10.1080/17518253.2014.894142

    Article  Google Scholar 

  23. Tayebi S, Baghernejad M, Saberi D, Niknam K (2011) Sulfuric acid ([3-(3-silicapropyl)sulfanyl]propyl)ester as a recyclable catalyst for the synthesis of 4,4\(^{\prime }\)-(arylmethylene)bis(1\(H\)-pyrazol-5-ols). Chin J Catal 32:1477–1483. doi:10.1016/S1872-2067(10)60260-4

    Article  CAS  Google Scholar 

  24. Niknam K, Mirzaee S (2011) Silica sulfuric acid : an efficient and recyclable solid acid catalyst for the synthesis of 4,\(4^{\prime }\)-(arylmethylene)bis (1\(H\)-pyrazol-5-ols). Synth Commun 41:2403–2413. doi:10.1080/00397911.2010.502999

  25. Baghernejad M, Niknam K (2012) Synthesis of 4, 4\(^{\prime }\)-(arylmethylene)bis(1H-pyrazol-5-ols) using silica-bonded ionic liquid as recyclable catalyst. Int J Chem 4:52–60. doi:10.5539/ijc.v4n3p52

    Article  CAS  Google Scholar 

  26. Sobhani S, Pakdin-Parizi Z, Nasseri R (2013) Nano n-propylsulfonated \(\gamma \)-\(\text{ Fe }_{2}\text{ O }_{3}\): a novel magnetically recyclable heterogeneous catalyst for the efficient synthesis of bis(pyrazolyl)methanes in water. J Chem Sci 125:975–979. doi:10.1007/s12039-013-0481-z

    Article  CAS  Google Scholar 

  27. Ren YM, Cai C (2008) A green procedure for the protection of carbonyl compounds catalyzed by iodine in ionic liquid. Tetrahedron Lett 49:7110–7112. doi:10.1016/j.tetlet.2008.09.088

    Article  CAS  Google Scholar 

  28. Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis and applications. Chem Soc Rev 41:4218–4244. doi:10.1039/C2CS15359A

    Article  CAS  PubMed  Google Scholar 

  29. Khurana JM, Vij K (2013) Nickel nanoparticles as semiheterogeneous catalyst for one-pot, three-component synthesis of 2-amino-4\(H\)-pyrans and pyran annulated heterocyclic moieties. Synth Commun 43:2294–2304. doi:10.1080/00397911.2012.700474

    Article  CAS  Google Scholar 

  30. Nagarapu L, Gaikwad HK, Palem JD, Venkatesh R, Bantu R, Sridhar B (2013) Convenient approach for the one-pot, three-component synthesis of triheterocyclic 4\(H\)-pyrimido[2,1-b]benzothiazole derivatives using TBAHS. Synth Commun 43:93–104. doi:10.1080/00397911.2011.592624

    Article  CAS  Google Scholar 

  31. Khurana JM, Ni Vij SK (2012) Nanoparticles: mild and efficient catalyst for the chemoselective synthesis of 2-arylbenzimidazoles, 2-arylbenzothiazoles and azomethines. Synth Commun 42:2606–2616. doi:10.1080/00397911.2011.563404

    Article  CAS  Google Scholar 

  32. Tu S, Zhang J, Xiang Z, Fang F, Li T (2005) Microwave-assisted one-pot synthesis of 2-amino-6, 7-disubstituted-5-methyl-5,8-dihydropyrido[2,3-d]pyrimidin-4(3\(H)\)-one without catalyst. Arkivoc xiv: 76-81

  33. Rajesh UC, Kholiya R, Pavan VS, Rawat DS (2014) Catalyst-free, ethylene glycol promoted one-pot three component synthesis of 3-amino alkylated indoles via Mannich-type reaction. Tetrahedron Lett 55:2977–2981. doi:10.1016/j.tetlet.2014.03.112

    Article  CAS  Google Scholar 

  34. Niknam K, Jamal A (2012) Silica-bonded \(N\)-propylpiperazine sodium \(N\)-Propionate as recyclable basic catalyst for synthesis of 3, 4-dihydropyrano[c]chromene derivatives and biscoumarins. Chin J Catal 33:1840–1849. doi:10.1016/S1872-2067(11)60457-9

    Article  CAS  Google Scholar 

  35. Sarda SR, Jadhav WN, Tekale SU, Jadhav GV, Patil BR, Suryawanshi GS, Pawar RP (2009) Phosphonium ionic liquid catalyzed an efficient synthesis of chalcones. Lett Org Chem 6:481–484. doi:10.2174/157017809789124966

    Article  CAS  Google Scholar 

  36. Zareai Z, Khoobi M, Ramazani A, Foroumadi A, Souldozi A, Slepokura K, Lis T, Shafiee A (2012) Synthesis of functionalized furo[3,2-c]coumarins via a one-pot oxidative pseudo three-component reaction in poly(ethylene glycol). Tetrahedron 68:6721–6726. doi:10.1016/j.tet.2012.05.112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director, SAIF, Chandigarh for providing spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra P. Pawar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1744 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauthale, S.S., Tekale, S.U., Jadhav, K.M. et al. Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis(coumarin)s and bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s. Mol Divers 20, 763–770 (2016). https://doi.org/10.1007/s11030-016-9673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9673-z

Keywords

Navigation