Skip to main content

Advertisement

Log in

Mining therapeutic targets from the antibiotic-resistant Campylobacter coli and virtual screening of natural product inhibitors against its riboflavin synthase

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Campylobacter coli resides in the intestine of several commonly consumed animals, as well as water and soil. It leads to campylobacteriosis when humans eat raw/undercooked meat or come into contact with infected animals. A common manifestation of the infection is fever, nausea, headache, and diarrhea. Increasing antibiotic resistance is being observed in this pathogen. The increased incidence of C. coli infection, and post-infection complications like Guillain-Barré syndrome, make it an important pathogen. It is essential to find novel therapeutic targets and drugs against it, especially with the emergence of antibiotic-resistant strains. In the current study, genomes of 89 antibiotic-resistant strains of C. coli were downloaded from the PATRIC database. Potent drug targets (n = 36) were prioritized from the core genome (n = 1,337 genes) of this species. Riboflavin synthase was selected as a drug target and pharmacophore-based virtual screening was performed to predict its inhibitors from the NPASS (n =  ~ 30,000 compounds) natural product library. The top three docked compounds (NPC115144, NPC307895, and NPC470462) were selected for dynamics simulation (for 50 ns) and ADMET profiling. These identified compounds appear safe for targeting this pathogen and can be further validated by experimental analysis before clinical trials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doorduyn Y, Van Den Brandhof W, Van Duynhoven Y, Breukink B, Wagenaar J, Van Pelt W (2010) Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study. Epidemiol Infect 138(10):1391–1404. https://doi.org/10.1017/S095026881000052X

    Article  CAS  PubMed  Google Scholar 

  2. Same RG, Tamma PD (2018) Campylobacter infections in children. Pediatrics Rev. https://doi.org/10.1542/pir.2017-0285

    Article  Google Scholar 

  3. Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P (2011) Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2011.00200

    Article  PubMed  PubMed Central  Google Scholar 

  4. Facciolà A, Riso R, Avventuroso E, Visalli G, Delia S, Laganà P (2017) Campylobacter: from microbiology to prevention. J Prevent Med Hygiene 58(2):E79

    Google Scholar 

  5. Nachamkin I (2002) Chronic effects of Campylobacter infection. Microbes Infect 4(4):399–403. https://doi.org/10.1016/s1286-4579(02)01553-8

    Article  PubMed  Google Scholar 

  6. Scallan E, Hoekstra R, Mahon B, Jones T, Griffin P (2015) An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol Infect 143(13):2795–2804. https://doi.org/10.1017/S0950268814003185

    Article  CAS  PubMed  Google Scholar 

  7. Moffatt CR, Moloi SB, Kennedy KJ (2017) First case report of myopericarditis linked to Campylobacter coli enterocolitis. BMC Infect Dis 17(1):1–4. https://doi.org/10.1186/s12879-016-2115-9

    Article  Google Scholar 

  8. Horrocks S, Anderson R, Nisbet D, Ricke S (2009) Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15(1–2):18–25. https://doi.org/10.1016/j.anaerobe.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Quintana-Hayashi MP, Thakur S (2012) Longitudinal study of the persistence of antimicrobial-resistant Campylobacter strains in distinct swine production systems on farms, at slaughter, and in the environment. Appl Environ Microbiol 78(8):2698–2705. https://doi.org/10.1128/AEM.07723-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillespie IA, O’Brien SJ, Frost JA, Adak GK, Horby P, Swan AV et al (2002) A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg Infect Dis 8(9):937. https://doi.org/10.3201/eid0809.010817

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sifré E, Salha BA, Ducournau A, Floch P, Chardon H, Mégraud F et al (2015) EUCAST recommendations for antimicrobial susceptibility testing applied to the three main Campylobacter species isolated in humans. J Microbiol Method 119:206–213. https://doi.org/10.1016/j.mimet.2015.10.018

    Article  CAS  Google Scholar 

  12. Arsenault J, Berke O, Michel P, Ravel A, Gosselin P (2012) Environmental and demographic risk factors for campylobacteriosis: do various geographical scales tell the same story? BMC Infect Dis 12(1):1–12. https://doi.org/10.1186/1471-2334-12-318

    Article  Google Scholar 

  13. Jie C, Sun X-t, Zheng Z, Yu Y-y (2011) Campylobacter enteritis in adult patients with acute diarrhea from 2005 to 2009 in Beijing, China. Chin Med J 124(10):1508–1512. https://doi.org/10.3760/cma.j.issn.0366-6999.2011.10.013

    Article  Google Scholar 

  14. European food safety authority and european centre for disease prevention and control (EFSA and ECDC)https://doi.org/10.2903/j.efsa.2021.6971

  15. Kendall ME, Crim S, Fullerton K, Han PV, Cronquist AB, Beletshachew Shiferaw L et al (2012) Travel-associated enteric infections diagnosed after return to the United States, foodborne diseases active surveillance network (FoodNet), 2004–2009. Clin Infect Dis 54(suppl_5):S480–S487. https://doi.org/10.1093/cid/cis052

    Article  PubMed  Google Scholar 

  16. Shen Z, Wang Y, Zhang Q, Shen J (2018) Antimicrobial resistance in Campylobacter spp. Microbiol Spectrum. https://doi.org/10.1128/microbiolspec.ARBA-0013-2017

    Article  Google Scholar 

  17. Frieden T (2013) Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  18. Liu D, Li X, Liu W, Yao H, Liu Z, Feßler AT et al (2019) Characterization of multiresistance gene cfr (C) variants in Campylobacter from China. J Antimicrobial Chemother 74(8):2166–2170. https://doi.org/10.1093/jac/dkz197

    Article  CAS  Google Scholar 

  19. Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q (2017) Emergence of a plasmid-borne multidrug resistance gene cfr (C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 72(6):1581–1588. https://doi.org/10.1093/jac/dkx023

    Article  CAS  PubMed  Google Scholar 

  20. Zhao S, Mukherjee S, Hsu C-H, Young S, Li C, Tate H et al (2019) Genomic analysis of emerging florfenicol-resistant Campylobacter coli isolated from the cecal contents of cattle in the United States. mSphere. https://doi.org/10.1128/mSphere.00367-19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pergola S, Franciosini M, Comitini F, Ciani M, De Luca S, Bellucci S et al (2017) Genetic diversity and antimicrobial resistance profiles of Campylobacter coli and Campylobacter jejuni isolated from broiler chicken in farms and at time of slaughter in central Italy. J Appl Microbiol 122(5):1348–1356. https://doi.org/10.1111/jam.13419

    Article  CAS  PubMed  Google Scholar 

  22. Tang Y, Sahin O, Pavlovic N, LeJeune J, Carlson J, Wu Z et al (2017) Rising fluoroquinolone resistance in Campylobacter isolated from feedlot cattle in the United States. Sci Rep 7(1):1–8. https://doi.org/10.1038/s41598-017-00584-z

    Article  CAS  Google Scholar 

  23. Vinueza-Burgos C, Wautier M, Martiny D, Cisneros M, Van Damme I, De Zutter L (2017) Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age. Poultry Sci 96(7):2366–2374. https://doi.org/10.3382/ps/pew487

    Article  CAS  Google Scholar 

  24. Zhang A, Song L, Liang H, Gu Y, Zhang C, Liu X et al (2016) Molecular subtyping and erythromycin resistance of Campylobacter in China. J Appl Microbiol 121(1):287–293. https://doi.org/10.1111/jam.13135

    Article  CAS  PubMed  Google Scholar 

  25. Chan WY, Wong M, Guthrie J, Savchenko AV, Yakunin AF, Pai EF et al (2010) Sequence-and activity-based screening of microbial genomes for novel dehalogenases. Microbial Biotechnol 3(1):107–120. https://doi.org/10.1111/j.1751-7915.2009.00155.x

    Article  CAS  Google Scholar 

  26. Rahman N, Ajmal A, Ali F, Rastrelli L (2020) Core proteome mediated therapeutic target mining and multi-epitope vaccine design for Helicobacter pylori. Genomics 112(5):3473–3483. https://doi.org/10.1016/j.ygeno.2020.06.026

    Article  CAS  PubMed  Google Scholar 

  27. Basharat Z, Jahanzaib M, Yasmin A, Khan IA (2021) Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against Yersinia pseudotuberculosis. Genomics 113(1):238–244. https://doi.org/10.1016/j.ygeno.2020.12.015

    Article  CAS  PubMed  Google Scholar 

  28. Chandrashekhar M, Nayak VL, Ramakrishna S, Mallavadhani UV (2016) Novel triazole hybrids of myrrhanone C, a natural polypodane triterpene: synthesis, cytotoxic activity and cell based studies. Eur J Med Chem 114:293–307. https://doi.org/10.1016/j.ejmech.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  29. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discover 20(3):200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  Google Scholar 

  30. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM et al (2020) The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 48(D1):D606–D612. https://doi.org/10.1093/nar/gkz943

    Article  CAS  PubMed  Google Scholar 

  31. Consortium U (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  32. Luo H, Lin Y, Liu T, Lai F-L, Zhang C-T, Gao F et al (2021) DEG 15, an update of the database of essential genes that includes built-in analysis tools. Nucleic Acids Res 49(D1):D677–D686. https://doi.org/10.1093/nar/gkaa917

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Wang S-X, Liu W, Wang C, Zhang F-Z, Ye Y-N et al (2020) CEG 2.0: an updated database of clusters of essential genes including eukaryotic organisms. Database. https://doi.org/10.1093/database/baaa112

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  35. Zeng X, Zhang P, He W, Qin C, Chen S, Tao L et al (2018) NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res 46(D1):D1217–D1222. https://doi.org/10.1093/nar/gkx1026

    Article  CAS  PubMed  Google Scholar 

  36. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nuc Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  37. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36. https://doi.org/10.1093/nar/28.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  PubMed  Google Scholar 

  39. Ye Y-N, Hua Z-G, Huang J, Rao N, Guo F-B (2013) CEG: a database of essential gene clusters. BMC Genom 14(1):1–10. https://doi.org/10.1186/1471-2164-14-769

    Article  CAS  Google Scholar 

  40. Luo H, Lin Y, Gao F, Zhang C-T, Zhang R (2014) DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 42(D1):D574–D580. https://doi.org/10.1093/nar/gkt1131

    Article  CAS  PubMed  Google Scholar 

  41. Basharat Z, Jahanzaib M, Rahman N (2021) Therapeutic target identification via differential genome analysis of antibiotic resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infect Genet Evol 94:105004. https://doi.org/10.1016/j.meegid.2021.105004

    Article  CAS  PubMed  Google Scholar 

  42. Sarangi AN, Lohani M, Aggarwal R (2015) Proteome mining for drug target identification in Listeria monocytogenes strain EGD-e and structure-based virtual screening of a candidate drug target penicillin binding protein 4. J Microbiol Method 111:9–18. https://doi.org/10.1016/j.mimet.2015.01.011

    Article  CAS  Google Scholar 

  43. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Laskowski R, MacArthur M, Thornton J (2006) PROCHECK: validation of protein-structure coordinates. In: Rossmann MG, Arnold E (eds) Crystallography of biological macromolecules. Wiley, New York, pp 722–725

    Google Scholar 

  45. Aris SNAM, Rahman MZA, Abd Rahman RNZR, Ali MSM, Salleh AB, Teo CY et al (2021) Identification of potential riboflavin synthase inhibitors by virtual screening and molecular dynamics simulation studies. J King Saud Uni Sci 33(2):101270. https://doi.org/10.1016/j.jksus.2020.101270

    Article  Google Scholar 

  46. Daisy P, Singh SK, Vijayalakshmi P, Selvaraj C, Rajalakshmi M, Suveena S (2011) A database for the predicted pharmacophoric features of medicinal compounds. Bioinform 6(4):167. https://doi.org/10.6026/97320630006167

    Article  Google Scholar 

  47. Serer MI, Carrica MdC, Trappe J, López Romero S, Bonomi HR, Klinke S et al (2019) A high-throughput screening for inhibitors of riboflavin synthase identifies novel antimicrobial compounds to treat brucellosis. FEBS J 286(13):2522–2535. https://doi.org/10.1111/febs.14829

    Article  CAS  PubMed  Google Scholar 

  48. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C et al (2019) OPLS3e: Extending force field coverage for drug-like small molecules. J Chem Theory Comput 15(3):1863–1874. https://doi.org/10.1021/acs.jctc.8b01026

    Article  CAS  PubMed  Google Scholar 

  49. Jorgensen W, Chandrasekhar J, Madura J (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  50. Muhammad I, Rahman N, Niaz S, Basharat Z, Rastrelli L, Jayanthi S et al (2021) Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants. Comput Bio Med 133:104362. https://doi.org/10.1016/j.compbiomed.2021.104362

    Article  CAS  Google Scholar 

  51. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  52. Chen Y, Ung C (2001) Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand–protein inverse docking approach. J Mol Graph Model 20(3):199–218. https://doi.org/10.1016/s1093-3263(01)00109-7

    Article  CAS  PubMed  Google Scholar 

  53. Pu L, Naderi M, Liu T, Wu H-C, Mukhopadhyay S, Brylinski M (2019) e toxpred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol 20(1):1–15. https://doi.org/10.1186/s40360-018-0282-6

    Article  Google Scholar 

  54. Ocejo M, Oporto B, Hurtado A (2019) Occurrence of Campylobacter jejuni and Campylobacter coli in cattle and sheep in northern Spain and changes in antimicrobial resistance in two studies 10-years apart. Pathogens 8(3):98. https://doi.org/10.3390/pathogens8030098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Majeed HT, Aljanaby AAJ (2019) Antibiotic susceptibility patterns and prevalence of some extended spectrum beta-lactamases genes in gram-negative bacteria isolated from patients infected with urinary tract infections in Al-Najaf City, Iraq. Avicenna J Med Biotechnol 11(2):192

    PubMed  PubMed Central  Google Scholar 

  56. Islam MR, Awal MAAK, Abourehab MAS, Samad A, Nur SM et al (2022) Computational identification of druggable bioactive compounds from Catharanthus roseus and Avicennia marina against Colorectal cancer by targeting Thymidylate synthase. Molecules 27(7):2089. https://doi.org/10.3390/molecules27072089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK (2010) Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS ONE 5(8):e12029. https://doi.org/10.1371/journal.pone.0012029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Casalini T (2021) Not only in silico drug discovery: molecular modeling towards in silico drug delivery formulations. J Control Rel 332:390–417. https://doi.org/10.1016/j.jconrel.2021.03.005

    Article  CAS  Google Scholar 

  59. Madhusudan Makwana K, Mahalakshmi R (2015) Implications of aromatic-aromatic interactions: from protein structures to peptide models. Protein Sci 24(12):1920–1933. https://doi.org/10.1002/pro.2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar K, Woo SM, Siu T, Cortopassi WA, Duarte F, Paton RS (2018) Cation-pi interactions in protein-ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem Sci 9(10):2655–2665. https://doi.org/10.1039/c7sc04905f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jawad B, Poudel L, Podgornik R, Ching WY (2020) Thermodynamic Dissection of the intercalation binding process of Doxorubicin to dsDNA with implications of ionic and solvent effects. J Phys Chem B 124(36):7803–7818. https://doi.org/10.1021/acs.jpcb.0c05840

    Article  CAS  PubMed  Google Scholar 

  62. Patil KK, Meshram RJ, Barage SH, Gacche RN (2019) Dietary flavonoids inhibit the glycation of lens proteins: implications in the management of diabetic cataract. 3 Biotech. https://doi.org/10.1007/s13205-019-1581-3

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gomes CN, Passaglia J, Vilela FP, da Silva FMP, Duque SS, Falcão JP (2018) High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol 73:327–333. https://doi.org/10.1016/j.fm.2018.02.014

    Article  PubMed  Google Scholar 

  64. Babu US, Harrison LM, Mammel MK, Bigley EC III, Hiett KL, Balan KV (2020) A loop-mediated isothermal amplification (LAMP) assay for the consensus detection of human pathogenic Campylobacter species. J Microbiol Method 176:106009. https://doi.org/10.1016/j.mimet.2020.106009

    Article  CAS  Google Scholar 

  65. Richardson LC, Bazaco MC, Parker CC, Dewey-Mattia D, Golden N, Jones K et al (2017) An updated scheme for categorizing foods implicated in foodborne disease outbreaks: a tri-agency collaboration. Foodborne Pathogen Dis 14(12):701–710. https://doi.org/10.1089/fpd.2017.2324

    Article  Google Scholar 

  66. Papadopoulos D, Petridou E, Papageorgiou K, Giantsis IA, Delis G, Economou V et al (2021) Phenotypic and molecular patterns of resistance among campylobacter coli and campylobacter jejuni isolates, from pig farms. Animals 11(8):2394. https://doi.org/10.3390/ani11082394

    Article  PubMed  PubMed Central  Google Scholar 

  67. Choi J-H, Moon DC, Mechesso AF, Kang HY, Kim S-J, Song HJ et al (2021) Antimicrobial resistance profiles and macrolide resistance mechanisms of Campylobacter coli isolated from pigs and chickens. Microorganisms 9(5):1077. https://doi.org/10.3390/microorganisms9051077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu D, Liu W, Li X, Yao H, Shen Z, Wang Y et al (2020) Presence and antimicrobial susceptibility of RE-cmeABC-positive Campylobacter isolated from food-producing animals, 2014–2016. Engineer 6(1):34–39. https://doi.org/10.1016/j.eng.2019.10.013

    Article  CAS  Google Scholar 

  69. Liu D, Li X, Wang Y, Schwarz S, Shen J (2020) Emergence of the phenicol exporter gene fexA in Campylobacter coli and Campylobacter jejuni of animal origin. Antimicrob Agent Chemother 64(6):e00240-e320. https://doi.org/10.1128/AAC.00240-20

    Article  CAS  Google Scholar 

  70. Tang B, Tang Y, Zhang L, Liu X, Chang J, Xia X et al (2020) Emergence of fexA in mediating resistance to florfenicols in Campylobacter. Antimicrob Agent Chemother 64(7):e00260-e320. https://doi.org/10.1128/AAC.00260-20

    Article  CAS  Google Scholar 

  71. Tang Y, Fang L, Xu C, Zhang Q (2017) Antibiotic resistance trends and mechanisms in the foodborne pathogen. Campylobacter Anim Health res Rev 18(2):87–98. https://doi.org/10.1017/S1466252317000135

    Article  PubMed  Google Scholar 

  72. Wang Y, Yao H, Deng F, Liu D, Zhang Y, Shen Z (2015) Identification of a novel fosXCC gene conferring fosfomycin resistance in Campylobacter. J Antimicrob Chemotherap 70(4):1261–1263. https://doi.org/10.1093/jac/dku488

    Article  CAS  Google Scholar 

  73. Sharma D, Sharma A, Singh B, Verma SK (2021) Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathogen 158:105103. https://doi.org/10.1016/j.micpath.2021.105103

    Article  CAS  Google Scholar 

  74. Fischer M, Bacher A (2008) Biosynthesis of vitamin B2: structure and mechanism of riboflavin synthase. Arch Biochem Biophy 474(2):252–265. https://doi.org/10.1016/j.abb.2008.02.008

    Article  CAS  Google Scholar 

  75. Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, García-Angulo VA (2015) Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS ONE 10(5):e0126124. https://doi.org/10.1371/journal.pone.0126124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin X, Li X, Lin X (2020) A review on applications of computational methods in drug screening and design. Molecules 25(6):1375. https://doi.org/10.3390/molecules25061375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mallavadhani UV, Chandrashekhar M, Shailaja K, Ramakrishna S (2019) Design, synthesis, anti-inflammatory, cytotoxic and cell based studies of some novel side chain analogues of myrrhanones A & B isolated from the gum resin of Commiphora mukul. Bioorg Chem 82:306–323. https://doi.org/10.1016/j.bioorg.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  78. Madasu C, Karri S, Sangaraju R, Sistla R, Uppuluri MV (2020) Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from Commiphora mukul gum resin: Identification of potent antiproliferative leads active against prostate cancer cells (PC-3). Eur J Med Chem 188:111974. https://doi.org/10.1016/j.ejmech.2019.111974

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by The Searle Company Limited (TSCL), Karachi, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Aurongzeb or Zarrin Basharat.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Khurshid Jalal and Kanwal Khan contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Supplementary file2 (XLS 3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalal, K., Khan, K., Hayat, A. et al. Mining therapeutic targets from the antibiotic-resistant Campylobacter coli and virtual screening of natural product inhibitors against its riboflavin synthase. Mol Divers 27, 793–810 (2023). https://doi.org/10.1007/s11030-022-10455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10455-z

Keywords

Navigation