Skip to main content

Advertisement

Log in

Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The HER2-positive patients occupy ~ 30% of the total breast cancer patients globally where no prevalent drugs are available to mitigate the frequent metastasis clinically except lapatinib and neratinib. This scarcity reinforced researchers' quest for new medications where natural substances are significantly considered. Valuing the aforementioned issues, this research aimed to study the ERBB2-mediated string networks that work behind the HER2-positive breast cancer formation regarding co-expression, gene regulation, GAMA-receptor-signaling pathway, cellular polarization, and signal inhibition. Following the overexpression, promotor methylation, and survivability profiles of ERBB2, the super docking position of HER2 was identified using the quantum tunneling algorithm. Supramolecular docking was conducted to study the target specificity of EPA and DHA fatty acids followed by a comprehensive molecular dynamic simulation (100 ns) to reveal the RMSD, RMSF, Rg, SASA, H-bonds, and MM/GBSA values. Finally, potential drug targets for EPA and DHA in breast cancer were constructed to determine the drug–protein interactions (DPI) at metabolic stages. Considering the values resulting from the combinational models of the oncoinformatic, pharmacodynamic, and metabolic parameters, long-chain omega-3 fatty acids like EPA and DHA can be considered as potential-targeted therapeutics for HER2-positive breast cancer treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Bilancio A, Migliaccio A (2018) The androgen receptor in breast cancer [Review]. Front Endocrinol. https://doi.org/10.3389/fendo.2018.00492

    Article  Google Scholar 

  2. Del Carmen OJM, Emilia GRD, Mares BH, Marcela OJ (2021) Educational interventions on breast cancer in men and women: a necessity in primary healthcare. Ecancermedicalscience 15:1255

    PubMed  PubMed Central  Google Scholar 

  3. Farshbafnadi M, Pastaki Khoshbin A, Rezaei N (2021) Immune checkpoint inhibitors for triple-negative breast cancer: from immunological mechanisms to clinical evidence. Int Immunopharmacol 98:107876

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Razeq H, Mansour A, Jaddan D (2020) Breast cancer care in Jordan. JCO Glob Oncol. https://doi.org/10.1200/jgo.19.00279

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fedorova O, Daks A, Shuvalov O, Kizenko A, Petukhov A, Gnennaya Y, Barlev N (2020) Attenuation of p53 mutant as an approach for treatment HER2-positive cancer. Cell Death Discov 6(1):1–8

    Article  Google Scholar 

  6. Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, Kazemi MH, Khorramdelazad H, Safari E, Farahmand L (2021) Breast cancer immunotherapy: Current and novel approaches. Int Immunopharmacol 98:107886. https://doi.org/10.1016/j.intimp.2021.107886

    Article  CAS  PubMed  Google Scholar 

  7. Zurrida S, Veronesi U (2014) Milestones in breast cancer treatment. Breast J 21(1):3–12. https://doi.org/10.1111/tbj.12361

    Article  CAS  PubMed  Google Scholar 

  8. Tong CWS, Wu M, Cho WCS, To KKW (2018) Recent advances in the treatment of breast cancer [mini review]. Front Oncol. https://doi.org/10.3389/fonc.2018.00227

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oh D-Y, Bang Y-J (2020) HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol 17(1):33–48

    Article  CAS  PubMed  Google Scholar 

  10. Schroeder RL, Stevens CL, Sridhar J (2014) Small molecule tyrosine kinase inhibitors of ERBB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules 19(9):15196–15212

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lu P, Foley J, Zhu C, McNamara K, Sirinukunwattana K, Vennam S, Varma S, Fehri H, Srivastava A, Zhu S, Rittscher J, Mallick P, Curtis C, West R (2021) Transcriptome and genome evolution during HER2-amplified breast neoplasia. Breast Cancer Res 23(1):73. https://doi.org/10.1186/s13058-021-01451-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lyu H, Han A, Polsdofer E, Liu S, Liu B (2018) Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharmaceutica Sinica B 8(4):503–510. https://doi.org/10.1016/j.apsb.2018.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  13. Prat AP-C (2020) HER2-enriched subtype and ERBB2 expression in HER2-positive breast cancer treated with dual HER2 blockade. JNCI 112(1):46–54

    Article  PubMed  Google Scholar 

  14. Prat A, Fan C, Fernández A, Hoadley KA, Martinello R, Vidal M, Viladot M, Pineda E, Arance A, Muñoz M (2015) Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy. BMC Med 13(1):1–11

    Article  Google Scholar 

  15. Chmielecki JR (2015) Oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin. Oncologist 20(1):7–12

    Article  CAS  PubMed  Google Scholar 

  16. Conlon NT, Kooijman JJ, van Gerwen SJC, Mulder WR, Zaman GJR, Diala I, Eli LD, Lalani AS, Crown J, Collins DM (2021) Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors. Br J Cancer 124(7):1249–1259. https://doi.org/10.1038/s41416-020-01257-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Ma DWL (2014) The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients 6:5184–5223. https://doi.org/10.3390/nu6115184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paixão EM, Oliveira AC, Pizato N, Muniz-Junqueria MI, Magalhães KG, Nakano EY, Ito MK (2017) The effects of EPA and DHA enriched fish oil on nutritional and immunological markers of treatment naïve breast cancer patients: a randomized double-blind controlled trial. Nutr J. https://doi.org/10.1186/s12937-017-0295-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fabian CJ, Kimler BF, Hursting SD (2015) Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. https://doi.org/10.1186/s13058-015-0571-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li M, Li D, Tang Y, Wu F, Wang J (2017) CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. Int J Mol Sci 18(9):1880. https://doi.org/10.3390/ijms18091880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(2):W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molinari MD, Mendonça J, Barbosa D, Marin D, Mertz-Henning LM, Nepomuceno A (2021) Transcriptome analysis using RNA-Seq from experiments with and without biological replicates: a review. Embrapa Soja-Artigo em periódico indexado (ALICE)

  23. Cortazar AR, Torrano V, Martín-Martín N, Caro-Maldonado A, Camacho L, Hermanova I, Guruceaga E, Lorenzo-Martín LF, Caloto R, Gomis RR, Apaolaza I, Quesada V, Trka J, Gomez-Muñoz A, Vincent S, Bustelo XR, Planes FJ, Aransay AM, Carracedo A (2018) CANCERTOOL: a visualization and representation interface to exploit cancer datasets. Cancer Res 78(21):6320–6328. https://doi.org/10.1158/0008-5472.CAN-18-1669

    Article  CAS  PubMed  Google Scholar 

  24. Arefin A, Ismail Ema T, Islam T, Hossen S, Islam T, Al Azad S, Uddin Badal N, Islam A, Biswas P, Alam NU, Islam E, Anjum M, Masud A, Kamran S, Rahman A, Kumar PP (2021) Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an insilico approach. J Biomed Res 35(6):459–473. https://doi.org/10.7555/JBR.35.20210111

    Article  PubMed  PubMed Central  Google Scholar 

  25. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nipun TS, Ema TI, Mia M, Hossen MS, Arshe FA, Ahmed SZ, Masud A, Taheya FF, Khan AA, Haque F, Azad SA, Al Hasibuzzaman M, Tanbir M, Anis S, Akter S, Mily SJ, Dey D (2021) Active site-specific quantum tunneling of hACE2 receptor to assess its complexing poses with selective bioactive compounds in co-suppressing SARS-CoV-2 influx and subsequent cardiac injury. J Adv Vet Anim Res 8(4):540–556. https://doi.org/10.5455/javar.2021.h544

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dey D, Paul PK, Al Azad S, Al Mazid MF, Khan AM, Sharif MA, Rahman MH (2021) Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. J Adv Vet Anim Res 8(1):24–35. https://doi.org/10.5455/javar.2021.h481

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21(2):100–107. https://doi.org/10.1097/PAP.0000000000000015

    Article  CAS  PubMed  Google Scholar 

  29. Loibl S, Gianni L (2017) HER2-positive breast cancer. Lancet 389(10087):2415–2429

    Article  CAS  PubMed  Google Scholar 

  30. Figueroa-Magalhães MC, Jelovac D, Connolly RM, Wolff AC (2014) Treatment of HER2-positive breast cancer. Breast 23(2):128–136

    Article  PubMed  Google Scholar 

  31. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367. https://doi.org/10.1093/nar/gky473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferdausi N, Islam S, Rimti FH, Quayum ST, Arshad EM, Ibnat A et al (2022) Point specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism. J Adv Vet Anim Res 9(2):230–240

    Article  PubMed  PubMed Central  Google Scholar 

  33. John A, Umashankar V, Krishnakumar S, Deepa PR (2015) Comparative modeling and molecular dynamics simulation of substrate binding in human fatty acid synthase: enoyl reductase and β-ketoacyl reductase catalytic domains. Genomics Inf 13(1):15–24. https://doi.org/10.5808/GI.2015.13.1.15

    Article  Google Scholar 

  34. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49(16):4805–4808

    Article  CAS  PubMed  Google Scholar 

  35. Paul PK, Azad SA, Rahman MH, Farjana M, Uddin MR, Dey D et al (2022) Catabolic profiling ofselective enzymesin the saccharification of nonfood lignocellulose parts of biomassinto functional edible sugars and bioenergy: an in silico bioprospecting. J Adv Vet Anim Res 9(1):19–32

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sharif MA, Hossen MS, Shaikat MM et al (2021) Molecular optimization, docking and dynamic simulation study of selective natural aromatic components to block E2-CD81 complex formation in predating protease inhibitor resistant HCV influx. Int J Pharm Res. https://doi.org/10.31838/ijpr/2021.13.02.408

    Article  Google Scholar 

  37. Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 46(W1):W338–W343. https://doi.org/10.1093/nar/gky356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang JF, Wang F, Chen YZ, Hao GF, Yang GF (2020) LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief Bioinform 21(6):2206–2218. https://doi.org/10.1093/bib/bbz141

    Article  CAS  PubMed  Google Scholar 

  39. Akter KM, Tushi T, Jahan Mily S, Mohona RA, Anis S, Chakraborty AK, Tabassum E, Islam TU, Akhi OJ, Nishe IS, Laxy BN, Zerin SS, Roble AJ, Hossain MI, Ahmed S, Azad SA (2020) RT-PCR mediated identification of SARS-CoV-2 patients from particular regions of Bangladesh and the multi-factorial analysis considering their pre and post infection health conditions. Biotechnol J Int 24(6):43–56. https://doi.org/10.9734/bji/2020/v24i630121

    Article  CAS  Google Scholar 

  40. Islam R, Akter KM, Rahman A, Khanam NN, Al Azad S, Islam MR, Farjana M, Rahman MH, Badal MN, Ahmed S (2021) The serological basis of the correlation between iron deficiency anemia and thyroid disorders in women: a community based study. J Pharm Res Int 30(19A):69–81

    Article  Google Scholar 

  41. Al Azad S, Ahmed S, Biswas P et al (2022) Quantitative analysis of the factors influencing IDA and TSH downregulation in correlation to the fluctuation of activated vitamin D3 in women. J Adv Biotechnol Exp Ther 5(2):320–333. https://doi.org/10.5455/jabet.2022.d118

    Article  Google Scholar 

  42. Al Azad S, Moazzem Hossain K, Rahman SM, Al Mazid MF, Barai P, Gazi MS (2020) In ovo inoculation of duck embryos with different strains of Bacillus cereus to analyse their synergistic post-hatch anti-allergic potentialities. Vet Med Sci 6(4):992–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Azad SA, Farjana M, Mazumder B, Abdullah-Al-Mamun M, Haque A (2020) Molecular identification of a Bacillus cereus strain from Murrah buffalo milk showed in vitro bioremediation properties on selective heavy metals. J Adv Vet Anim Res 7(1):62–68. https://doi.org/10.5455/javar.2020.g394

    Article  PubMed  Google Scholar 

  44. Rashaduzzaman M, Kamrujjaman M, Islam MA, Ahmed S, Al Azad S. An experimental analysis of different point specific musculoskeletal pain among selected adolescent-club cricketers in Dhaka city.

  45. Beljaards L, Elmahdy MS, Verbeek F, Staring M (2020) A cross-stitch architecture for joint registration and segmentation in adaptive radiotherapy. InMedical imaging with deep learning, PMLR. pp 62–74

  46. Rezaei-Tavirani M, Zamanian Azodi M, Bashash D, Ahmadi N, Rostaim-Nejad M (2019) Breast cancer interaction network concept from mostly related components. Galen Med J 8:1298. https://doi.org/10.31661/gmj.v8i0.1298

    Article  Google Scholar 

  47. Arjmand B, Khodadoost M, Sherafat SJ, Tavirani MR, Moghadam MH, Tavirani SR, Khanabadi B, Iranshahi M (2021) Assessment of colon cancer molecular mechanism: a system biology approach. Gastroenterol Hepatol Bed Bench 14:S51–S57

    PubMed  PubMed Central  Google Scholar 

  48. Yin W, Mendoza L, Monzon-Sandoval J, Urrutia AO, Gutierrez H (2021) Emergence of co-expression in gene regulatory networks. PLoS ONE 16(4):e0247671. https://doi.org/10.1371/journal.pone.0247671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Moraes CL, Cruz e Melo N, Valoyes MAV, Naves do Amaral W (2022) AGR2 and AGR3 play an important role in the clinical characterization and prognosis of basal like breast cancer. Clin Breast Cancer 22(2):e242–e252. https://doi.org/10.1016/j.clbc.2021.07.008

    Article  CAS  PubMed  Google Scholar 

  50. Barma N, Stone TC, Carmona Echeverria LM, Heavey S (2021) Exploring the value of BRD9 as a biomarker, therapeutic target and co-target in prostate cancer. Biomolecules 11(12):1794. https://doi.org/10.3390/biom11121794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Azumah R, Hummitzsch K, Hartanti MD, St. John JC, Anderson RA, Rodgers RJ (2022) Analysis of upstream regulators, networks, and pathways associated with the expression patterns of polycystic ovary syndrome candidate genes during fetal ovary development. Front Genet 12:762177. https://doi.org/10.3389/fgene.2021.762177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhyan SB, Wee Y, Liu Y, Cummins S, Zhao M (2019) Integrative analysis of common genes and driver mutations implicated in hormone stimulation for four cancers in women. PeerJ 7:e6872. https://doi.org/10.7717/peerj.6872

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kübler E, Albrecht H (2018) Large set data mining reveals overexpressed GPCRs in prostate and breast cancer: potential for active targeting with engineered anti-cancer nanomedicines. Oncotarget 9(38):24882–24897

    Article  PubMed  PubMed Central  Google Scholar 

  54. El Buri A, Adams DR, Smith D, Tate RJ, Mullin M, Pyne S, Pyne NJ (2018) The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget 9(50):29453–29467

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yue Z, Yuan Z, Zeng L, Wang Y, Lai L, Li J, Sun P, Xue X, Qi J, Yang Z, Zheng Y, Fang Y, Li D, Siwko S, Li Y, Luo J, Liu M (2018) LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J 32(5):2422–2437

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ashok G, Miryala SK, Saju MT, Anbarasu A, Ramaiah S (2022) FN1 encoding fibronectin as a pivotal signaling gene for therapeutic intervention against pancreatic cancer. Mol Genet Genomics 18:1–6

    Google Scholar 

  57. Muthiah I, Rajendran K, Dhanaraj P, Vallinayagam S (2021) In silico structure prediction, molecular docking and dynamic simulation studies on G Protein-Coupled Receptor 116: a novel insight into breast cancer therapy. J Biomol Struct Dyn 39(13):4807–4815

    Article  CAS  PubMed  Google Scholar 

  58. Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigin ME, French RP, Lowy AM, Murray F (2018) GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front Pharmacol 22(9):431

    Article  Google Scholar 

  59. Ju MS, Ahn HM, Han SG, Ko S, Na JH, Jo M, Lim CS, Ko BJ, Yu YG, Lee WK, Kim YJ, Jung ST (2021) A human antibody against human endothelin receptor type A that exhibits antitumor potency. Exp Mol Med 53(9):1437–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chan YT, Lai AC, Lin RJ, Wang YH, Wang YT, Chang WW, Wu HY, Lin YJ, Chang WY, Wu JC, Yu JC, Chen YJ, Yu AL (2020) GPER-induced signaling is essential for the survival of breast cancer stem cells. Int J Cancer 146(6):1674–1685

    Article  CAS  PubMed  Google Scholar 

  61. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, Scher HI, Sliwkowski MX (2002) Targeting ligand-activated ERBB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  62. Tari A, Hung MC, Li K et al (1999) Growth inhibition of breast cancer cells by Grb2 downregulation is correlated with inactivation of mitogen-activated protein kinase in EGFR, but not in ERBB2, cells. Oncogene 18:1325–1332

    Article  CAS  PubMed  Google Scholar 

  63. Tan M, Li P, Sun M et al (2006) Upregulation and activation of PKCα by ERBB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKCα and Src inhibitors. Oncogene 25:3286–3295

    Article  CAS  PubMed  Google Scholar 

  64. Henriksen L (2013) Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS ONE 8:e58148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lim SJ, Lopez-Berestein G, Hung MC et al (2000) Grb2 downregulation leads to Akt inactivation in heregulin-stimulated and ERBB2-overexpressing breast cancer cells. Oncogene 19:6271–6276

    Article  CAS  PubMed  Google Scholar 

  66. Sanders JM, Wampole ME, Thakur ML, Wickstrom E (2013) Molecular determinants of epidermal growth factor binding: a molecular dynamics study. PLoS ONE 8(1):e54136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Negro A, Brar BK, Gu Y, Peterson KL, Vale W, Lee KF (2006) ERBB2 is required for G protein-coupled receptor signaling in the heart. Proc Natl Acad Sci USA 103(43):15889–15893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arora P, Cuevas B, Russo A et al (2008) Persistent transactivation of EGFR and ERBB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene 27:4434–4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fujimoto Y, Morita TY, Ohashi A, Haeno H, Hakozaki Y, Fujii M, Mukohara T (2020) Combination treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 therapy in PIK3CA-mutant HER2-positive breast cancer cells. Sci Rep 10(1):1–16

    Article  Google Scholar 

  70. Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M (2020) PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci 22(1):173

    Article  PubMed  PubMed Central  Google Scholar 

  71. Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 11:151

    PubMed  PubMed Central  Google Scholar 

  72. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, Wei W (2021) Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun 41(11):1183–1194

    Article  Google Scholar 

  73. Morey BN, Gee GC, von Ehrenstein OS, Shariff-Marco S, Canchola AJ, Yang J, Gomez SL (2019) Peer reviewed: Higher breast cancer risk among immigrant Asian American women than among US-born Asian American Women. Prev Chronic Dis 16:E20

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ahmed AR (2016) HER2 expression is a strong independent predictor of nodal metastasis in breast cancer. J Egypt Natl Canc Inst 28(4):219–227

    Article  PubMed  Google Scholar 

  75. Roman-Rosales AA, García-Villa E, Herrera LA, Gariglio P, Díaz-Chávez J (2018) Mutant p53 gain of function induces HER2 over-expression in cancer cells. BMC Cancer 18(1):1–12

    Article  Google Scholar 

  76. Salta S, Nunes SP, Fontes-Sousa M, Lopes P, Freitas M, Caldas M, Antunes L, Castro F, Antunes P, de Sousa SP, Henrique R, Jerónimo C (2018) A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J Clin Med. https://doi.org/10.3390/jcm7110420

    Article  PubMed  PubMed Central  Google Scholar 

  77. Constâncio V, Nunes SP, Henrique R, Jerónimo C (2020) DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types. Cells. https://doi.org/10.3390/cells9030624

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hung CS, Wang SC, Yen YT, Lee TH, Wen WC, Lin RK (2018) Hypermethylation of CCND2 in lung and breast cancer is a potential biomarker and drug target. Int J Mol Sci. https://doi.org/10.3390/ijms19103096

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mou MA, Keya NA, Islam M, Hossain MJ, Al Habib MS, Alam R, Rana S, Samad A, Ahammad F (2020) Validation of CSN1S1 transcriptional expression, promoter methylation, and prognostic power in breast cancer using independent datasets. Biochem Biophys Rep. https://doi.org/10.1016/j.bbrep.2020.100867

    Article  PubMed  PubMed Central  Google Scholar 

  80. Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan–Meier estimate. Int J Ayurveda Res 1(4):274

    Article  PubMed  PubMed Central  Google Scholar 

  81. Altman DG (1992) Analysis of survival times. Practical statistics for medical research. Chapman and Hall, London, pp 365–393

    Google Scholar 

  82. Stel VS, Dekker FW, Tripepi G, Zoccali C, Jager KJ (2011) Survival analysis I: the Kaplan–Meier method. Nephron Clin Pract 119(1):c83–c88. https://doi.org/10.1159/000324758

    Article  PubMed  Google Scholar 

  83. Tesfay B, Getinet T, Assefa E (2021) Survival analysis of time to death of breast cancer patients: in case of ayder comprehensive specialized hospital tigray. Ethiopia Cogent Med 8:1908648. https://doi.org/10.1080/2331205X.2021.1908648

    Article  Google Scholar 

  84. Ouyang DJ, Chen QT, Anwar M et al (2021) The efficacy of pyrotinib as a third- or higher-line treatment in HER2-positive metastatic breast cancer patients exposed to lapatinib compared to lapatinib-naive patients: a real-world study. Front Pharmacol 12:682568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andrade F, Nakata A, Gotoh N, Fujita A (2020) Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet Mol Biol 43(1):e20180269. https://doi.org/10.1590/1678-4685-GMB-2018-0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rakshit G, Jayaprakash V (2022) Tuberculosis and HIV responses threatened by nCOVID-19: a situation prompting an in-silico investigation of reported MbtA inhibitors for combined inhibition of SARS-CoV-2 and HIV-TB co-infection. Struct Chem. https://doi.org/10.1007/s11224-022-02013-y

    Article  Google Scholar 

  87. Malik FK, Guo JT (2022) Insights into protein-DNA interactions from hydrogen bond energy-based comparative protein-ligand analyses. Proteins 90(6):1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Naha A, Banerjee S, Debroy R, Basu S, Ashok G, Priyamvada P, Kumar H, Preethi AR, Singh H, Anbarasu A, Ramaiah S (2022) Network metrics, structural dynamics and density functional theory calculations identified a novel ursodeoxycholic acid derivative against therapeutic target Parkin for Parkinson’s disease. Comput Struct Biotechnol J 1(20):4271–4287

    Article  Google Scholar 

  89. Basith S, Cui M, Macalino SJY, Park J, Clavio NAB, Kang S, Choi S (2018) Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00128

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dipta DE, Tanzila Ismail EM, Partha Biswas SA et al (2021) Antiviral effects of bacteriocin against animal-to-human transmittable mutated sars-cov-2: a systematic review. Front Agric Sci Eng 8:603–622

    Article  Google Scholar 

  91. Abdullah-Al-Mamun M, Jakir Hasan M, Al Azad S et al (2016) Evaluation of potential probiotic characteristics of isolated lactic acid bacteria from goat milk. Biotechnol J Int 14(2):1–7. https://doi.org/10.9734/BBJ/2016/26397

    Article  Google Scholar 

  92. Al Azad S, Shahriyar S, Mondal KJ (2016) Opsonin and its mechanism of action in secondary immune. J Mol Stud Med Res 1(02):48–56. https://doi.org/10.18801/jmsmr.010216.06

    Article  Google Scholar 

  93. Biswas P, Dey D, Biswas PK, Rahaman TI, Saha S, Parvez A, Khan DA, Lily NJ, Saha K, Sohel M, Hasan MM, Al Azad S, Bibi S, Hasan MN, Rahmatullah M, Chun J, Rahman MA, Kim B (2022) A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int J Mol Sci 23(19):11746. https://doi.org/10.3390/ijms231911746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salauddin Al Azad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshed, A.K.M.H., Al Azad, S., Mia, M.A.R. et al. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol Divers 27, 2651–2672 (2023). https://doi.org/10.1007/s11030-022-10573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10573-8

Keywords

Navigation