Skip to main content
Log in

Association mapping of agronomic and quality traits in USDA pea single-plant collection

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Association mapping is an efficient approach for the identification of the molecular basis of agronomic traits in crop plants. For this purpose in pea (Pisum sativum L.), we genotyped and phenotyped individual lines of the single-plant-derived core collection of the USDA pea collection including accessions from 330 landraces and cultivars of Pisum sativum subsp. sativum var. sativum, 28 P. sativum subsp. elatius var. elatius, 16 P. sativum subsp. sativum var. arvense, four P. sativum subsp. elatius var. pumilio, three P. abyssinicum, two P. fulvum, and one P. sativum subsp. transcaucasicum. These 384 accessions were collected or donated from a total of 64 countries. The accessions were genotyped with 256 informative SNPs using a primer extension chemistry and matrix-assisted laser desorption/ionization (MALDI–TOF) mass spectrometry assay. Genetic structure analysis showed that the collection was structured into two main groups, corresponding roughly to the cultivated types/landraces and the more primitive form species and subspecies, with some intermediates. Linkage disequilibrium of pairwise loci and population structure of the collection were analyzed, and an association analysis between SNP genotypes and 25 valuable traits such as disease resistance, seed type/color, flower color, seed low molecular weight carbohydrate concentration, and seed mineral nutrient concentration was performed using a mixed linear model. A total of 71 marker–trait associations were detected as significant with 1–34 markers per trait based on the false discovery rate (FDR < 0.05). This study demonstrates the potential of using association mapping to identify markers for pea breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bastianelli D, Grosjean F, Peyronnet C, Duparque M, Regnier JM (1998) Feeding value of pea (Pisum sativum L.) 1. Chemical composition of different categories of pea. Anim Sci 67:609–619

    Article  Google Scholar 

  • Benhamou N, Grenier J, Chrispeels MJ (1991) Accumulation of β-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol 97:739–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Met 57:289–300

    Google Scholar 

  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 1:93–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo ZW, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Liu H, Liu H, Liu H, Stein N, Schulte D, Steuernagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, Balding DJ, Waugh R, O’Sullivan DM, Consortium A (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA 107:21611–21616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coyne CJ, Brown AF, Timmerman-Vaughan GM, McPhee K, Grusak MA (2005a) USDA-ARS refined pea core collection for 26 qualitative traits. Pisum Genetics 37:3–6

    Google Scholar 

  • Coyne CJ, Grusak MA, Razai L, Baik BK (2005b) Variation for pea seed protein concentration in the USDA Pisum core collection. Pisum Genetics 37:5–9

    Google Scholar 

  • Dabney A, Storey JD (2004) Q-value estimation for false discovery rate control. Medicine 344:539–548

    Google Scholar 

  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Henaut I, Burstin J, Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genom 11:468

    Article  Google Scholar 

  • Dolezel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytom Part A 77A:635–642

    Article  CAS  Google Scholar 

  • Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genom 15:126

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ekvall J, Stegmark R, Nyman M (2006) Content of low molecular weight carbohydrates in vining peas (Pisum sativum) related to harvest time, size and brine grade. Food Chem 94:513–519

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esquinas-Alcazar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev Genet 6:946–953

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Sym 68:69–78

    Article  CAS  Google Scholar 

  • FAOSTAT (2012) http://faostat.fao.org

  • Flint-Garcia SA, Thornsberry JM, Buckler EST (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet 60:2.12.1–2.12.16

    Google Scholar 

  • Greene C (2008) A history of food. 2d edition. Libr J 133:96

    Google Scholar 

  • Grusak MA, Burgett CL, Knewtson SJ, Lopez-Millan A, Ellis DR, Li C, Musetti VM, Blair MW (2004) Novel approaches to improve legume seed mineral nutrition. Proceedings of the 5th AEP-2nd ICLGG conference, pp 37–38

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia L, Yan W, Zhu C, Agrama HA, Jackson A, Yeater K, Li X, Huang B, Hu B, McClung A, Wu D (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One 7:e32703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing RC, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:2263–2275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing RC, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones DA, DuPont MS, Ambrose MJ, Frias J, Hedley CL (1999) The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Sci Res 9:305–310

    Article  CAS  Google Scholar 

  • Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee SH (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knudsen KEB, Li BW (1991) Determination of oligosaccharides in protein-rich feedstuffs by gas-liquid chromatography and high-performance liquid chromatography. J Agric Food Chem 39:689–694

    Article  CAS  Google Scholar 

  • Kwon SJ, Brown AF, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee KE, Coyne CJ (2012) Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genom 34:305–320

    Article  CAS  Google Scholar 

  • Kwon SJ, Smýkal P, Hu J, McGee RJ, McPhee KE, Coyne CJ (2013) User-friendly markers linked to Fusarium wilt race 1 resistance gene in pea for marker-assisted selection. Plant Breed 132:642–648

    Article  CAS  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161

    Article  PubMed Central  PubMed  Google Scholar 

  • Loridon K, McPhee KE, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne CJ, Lejeune-Hénault I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Malvick DK, Percich JA (1999) Identification of Pisum sativum germ plasm with resistance to root rot caused by multiple strains of Aphanomyces euteiches. Plant Dis 83:51–54

    Article  Google Scholar 

  • Martínez-Villaluenga C, Frias J, Vidal-Valverde C (2008) Alpha-galactosides: antinutritional factors or functional ingredients? Crit Rev Food Sci Nutr 48:301–316

    Article  PubMed  Google Scholar 

  • McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Hamilton RS, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Agriculture: feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • McPhee K (2005) Variation for seedling root architecture in the core collection of pea germplasm. Crop Sci 45:1758–1763

    Article  Google Scholar 

  • McPhee KE, Muehlbauer FJ (1999) Stem strength in the core collection of Pisum germplasm. Pisum Genet 31:21–23

    Google Scholar 

  • McPhee KE, Tullu A, Kraft JM, Muehlbauer FJ (1999) Resistance to Fusarium wilt race 2 in the Pisum core collection. J Am Soc Hortic Sci 124:28–31

    Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nallu S, Silverstein KA, Zhou P, Young ND, VandenBosch KA (2014) Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula. Plant J 78:697–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikolopoulou D, Grigorakis K, Stasini M, Alexis MN, Iliadis K (2007) Differences in chemical composition of field pea (Pisum sativum) cultivars: effects of cultivation area and year. Food Chem 103:847–852

    Article  CAS  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11:185–198

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Proels RK, Hückelhoven R (2014) Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol Plant Pathol 15:858–864

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org

  • Ramamurthy RK, Jedlicka J, Graef GL, Waters BM (2014) Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Mol Breed 34:431–445

    Article  Google Scholar 

  • Ray H, Bett K, Tar’an B, Vandenberg A, Thavarajah D, Warkentin T (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54(4):1698–1708

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci 109:8872–8877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Saha GC, Vandemark GJ (2012) Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (Pisum sativum L.) subjected to abiotic and biotic stress. Am J Plant Sci 3:235–242

    Article  CAS  Google Scholar 

  • Sankaran RP, Huguet T, Grusak MA (2009) Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor Appl Genet 119:241–253

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burstin J, Aubert G, Tar’an B, Bett KE, Warkentin TD, Sharpe AG (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tedford EC, Inglis DA (1999) Evaluation of legumes common to the Pacific northwest as hosts for the pea cyst nematode, Heterodera goettingiana. J Nematol 31:155–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma S, Singh S (2012) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55:471–479

    Article  CAS  PubMed  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Martinant JP, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Vidal-Valverde C, Frias J, Hernandez A, Martín-Alvarez PJ, Sierra I, Rodríguez C, Blazquez I, Vicente G (2003) Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum) seeds. J Sci Food Agri 83:298–306

    Article  CAS  Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler EST (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Ranc N, Munos S, Rolland S, Bouchet JP, Desplat N, Le Paslier MC, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581

    Article  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cohn NS, Mitchell JP (1996) Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiol 112:1111–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao H, Nettleton D, Soller M, Dekkers JCM (2005) Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL. Genet Res 86:77–87

    Article  CAS  PubMed  Google Scholar 

  • Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genet 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the USA Dry Pea and Lentil Council. We thank Mr. Hun Huang Ooi for assistance with DNA plate organization and Ms. Sheri McGrew for taking care of the plants in the greenhouse. The Sequenom iPLEX assay was done in the USDA Wheat Genetics, Quality, Physiology, and Disease Research Unit. We thank Dr. Derick Jiwan and Dr. Deven See for their technical support on SNP calling and validation. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. McGee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Phenotypic data for each trait of PSP collection (XLSX 83 kb)

Primers used in Sequenom MassArray for SNPs (XLSX 46 kb)

11032_2015_277_MOESM3_ESM.pptx

Plot of mean likelihood L(K) and variance per K value from STRUCTURE (upper left); Evanno plots determine the number of K subgroups (Earl and vonHoldt 2011) (PPTX 69 kb)

11032_2015_277_MOESM4_ESM.pptx

Descriptive statistics for the seed concentration data for mineral nutrients and low molecular weight carbohydrates (PPTX 827 kb)

11032_2015_277_MOESM5_ESM.pptx

Linkage disequilibrium (LD) plot of 203 SNPs with the genetic distance (cM) information. Lower left are linkage disequilibrium P values and upper right are r 2 values (PPTX 81 kb)

11032_2015_277_MOESM6_ESM.pptx

Intra-chromosomal LD (r 2) decay of marker pairs over all chromosomes as a function of genetic distance (cM). The horizontal line indicates the 95th percentile distribution of unlinked r 2 (PPTX 214 kb)

The linkage disequilibrium (LD) overview for the PSP collection calculated using 203 SNPs (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Holdsworth, W., Ma, Y. et al. Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breeding 35, 75 (2015). https://doi.org/10.1007/s11032-015-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0277-6

Keywords

Navigation