Skip to main content
Log in

Assessment of nutritional characteristics of virus-resistant transgenic white clover (Trifolium repens L.) grown under field and glasshouse conditions

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

White clover (Trifolium repens L.) is an important pasture legume in temperate areas throughout the world, providing fodder for grazing animals and improving soil fertility via symbiotic nitrogen fixation. However, the persistence and stress tolerance of white clover are affected by a number of viruses including alfalfa mosaic virus. Transgenic white clover plants with ectopic expression of the alfalfa mosaic virus coat protein were resistant to the virus under field and greenhouse conditions. With all genetic modifications of major consequence, there is the possibility of unintended effects on forage quality and natural toxicant levels. In this paper, we describe the evaluation of a range of parameters related to the nutritive value of white clover herbage to grazing animals and a suite of naturally occurring secondary metabolites that have the potential to be natural toxicants in transgenic white clover plants and wild-type control plants with a similar genetic background. Samples were collected from plants grown under both field and glasshouse conditions. Several commercial cultivars were included for comparison. Although there was plant-to-plant variation, as expected from an obligate outcrossing species, there were no significant differences in the range of this variation between transgenic and wild-type plants. Furthermore, no consistent significant differences were found between groups of transgenic and wild-type plants from the same generation, when mean nutritional parameters (crude protein, in vitro dry matter digestibility, neutral detergent fibre and water-soluble carbohydrates) and natural toxicants (cyanogenic glucosides, phytoestrogens and saponins) were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams NR (1995) Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci 73:1509–1515

    CAS  PubMed  Google Scholar 

  • Agrell J, Oleszek W, Stochmal A, Olsen M, Anderson P (2003) Herbivore-induced responses in alfalfa (Medicago sativa). J Chem Ecol 29:303–320

    Article  CAS  Google Scholar 

  • Ahmad VU, Basha A (2000) The spectroscopic data of saponins. The triterpenoid glycosides, vol I–III. CRC Press, Boca Raton

    Google Scholar 

  • Ayres JF, Nandra KS, Turner AD (1998) A study of the nutritive value of white clover (Trifolium repens L.) in relation to different stages of phenological maturity in the primary growth phase in spring. Grass Forage Sci 53:250–259

    Article  CAS  Google Scholar 

  • Ayres JF, Murison RD, Turner AD, Harden S (2001) A rapid semi-quantitative procedure for screening hydrocyanide acid in white clover. Aust J Exp Agric 41:515–521

    Article  CAS  Google Scholar 

  • Barnett OW, Gibson PB (1975) Identification and prevalence of white clover viruses and the resistance of Trifolium species to these viruses. Crop Sci 15:32–37

    Article  Google Scholar 

  • Bennett D, Morley FHW, Axelsen A (1976) Bioassay responses of ewes to legume swards. II. Uterine weight results from swards. Aust J Agric Res 18:495–504

    Article  Google Scholar 

  • Bennetts HW, Underwood EJ, Shier FL (1946) A specific breeding problem of sheep on subterranean clover pastures in western Australia. Aust Vet J 22:2–12

    Article  CAS  PubMed  Google Scholar 

  • Bialy Z, Jurzysta M, Oleszek W, Piacente S, Pizza C (1999) Saponins in alfalfa (Medicago sativa L.) root and their structural elucidation. J Agric Food Chem 47:3185–3192

    Article  CAS  PubMed  Google Scholar 

  • Booth NL, Overk CR, Yao P, Totura S, Deng Y, Hedayat AS, Bolton JL, Pauli GF, Farnsworth NR (2006) Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estrogenic activity. J Agric Food Chem 54:1277–1282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caradus JR, Woodfield DR (1997) World checklist of white clover varieties II. N Z J Agric Res 40:115–206

    Article  Google Scholar 

  • Caradus JR, Woodfield D, Stewart AV (1996) Overview and vision for white clover. In: Woodfield DR (Ed) White clover: New Zealand’s competitive edge. Proceedings of a joint symposium between Agronomy Society of New Zealand and New Zealand Grassland Association held at Lincoln University, New Zealand. Agronomy Society of New Zealand/New Zealand Grassland Association; Agronomy Society of New Zealand Special Publication No. 11/Grassland Reasearch and Practice Series No. 6. Lincoln University, New Zealand, pp 1–6, 21–22 Nov 1995

  • Caradus JR, Clifford PTP, Chapman DF, Cousins GR, Williams WM, Miller JE (1997) Breeding and description of ‘Grasslands Sustain’, a medium-large-leaved white clover (Trifolium repens L.) cultivar. N Z J Agric Res 40:1–7

    Article  Google Scholar 

  • Carlsen S, Fomsgaard I (2008) Biologically active secondary metabolites in white clover (Trifolium repens L.)—a review focusing on contents in the plant, plant–pest interactions and transformation. Chemoecology 18:129–170

    Article  CAS  Google Scholar 

  • Clark SG, Taylor J, Smith KF (1992) Seed and herbage production and cyanogenic potential of white clover under irrigation at Neuarpurr, Victoria. In: Hutchinson KJ, Vickery PJ (Eds) Proceedings 6th Australian society of agronomy conference. The Australian society of agronomy. Parkville, pp 288–291

  • Corkill L (1940) Cyanogenesis in white clover (Trifolium repens L.). I. Cyanogenesis in single plants. N Z J Sci Technol 23:178B–193B

    Google Scholar 

  • Crush JR, Caradus JR (1995) Cyanogenesis potential and iodine concentration in white clover (Trifolium repens L.) cultivars. N Z J Agric Res 38:309–316

    Article  CAS  Google Scholar 

  • Daday H (1955) Cyanogenesis strains of white clover (Trifolium repens L.). Grass Forage Sci 10:266–274

    Article  CAS  Google Scholar 

  • Emmerling M, Chu P, Smith K, Kalla R, Spangenberg G (2004) Field evaluation of transgenic white clover with AMV immunity and development of elite transgenic germplasm. In: Hopkins A, Wang Y, Mian R, Sledge M, Barker E (eds) Molecular breeding of forage and turf. Kluwer Academic Press, New York, pp 359–366

    Chapter  Google Scholar 

  • Francis CM, Millington AJ, Bailey ET (1967) The distribution of oestrogenic isoflavones in the genus Trifolium. Aust J Agric Res 18:47–54

    Article  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    Article  CAS  PubMed  Google Scholar 

  • Fraser J, Nowak J (1988) Studies on variability in white clover: growth habits and cyanogenic glucosides. Ann Bot 61:311–318

    CAS  Google Scholar 

  • Fulkerson WJ, Slack K, Hennessy DW, Hough GM (1998) Nutrients in ryegrass (Lolium spp.), white clover (Trifolium repens) and kikuyu (Pennisetum clandestinum) pastures in relation to season and stage of regrowth in a subtropical environment. Aust J Exp Agric 38:227–240

    Article  CAS  Google Scholar 

  • Fulkerson WJ, Neal JS, Clark CF, Horadagoda A, Nandra KS, Barchia I (2007) Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: grasses and legumes. Livest Sci 107:253–264

    Article  Google Scholar 

  • Garrett RG (1991) Impact of viruses on pasture legume productivity. In: McFarlane N (Ed) Proceedings of white clover conference. Department of agriculture Victoria, Conference proceedings No. 45. Pastoral Research Institute, Hamilton, pp 50–57, 15–16 October 1991

  • Harris S, Auldist MJ, Clark DA, Jansen EBL (1998) Effects of white clover content in the diet on herbage intake, milk production and milk composition of New Zealand dairy cows housed indoors. J Dairy Res 65:389–400

    Article  CAS  PubMed  Google Scholar 

  • Hayden KJ, Parker IM (2002) Plasticity in cyanogenesis of Trifolium repens L.: inducibility, fitness costs and variable expression. Evolut Ecol Res 4:155–168

    Google Scholar 

  • Hill MJ, Hockney MJ, Mulcahy CA, Rapp G (1995) The effect of hydrogen cyanide potential (HCNp) and sward morphology on the relative acceptability of sheep of white clover and Caucasian clover herbage. Grass Forage Sci 50:1–9

    Article  Google Scholar 

  • Hoffman PC, Sievert SJ, Shaver RD, Welch DA, Combs DK (1993) In situ dry matter, protein, and fiber degradation of perennial forages. J Dairy Sci 76:2632–2643

    Article  CAS  PubMed  Google Scholar 

  • Hughes MA, Stirling JD (1982) A study of dominance at the locus controlling cyanoglucoside production in Trifolium repens L. Euphytica 31:477–483

    Article  CAS  Google Scholar 

  • Jahufer MZZ, Venkatanagappa S, Lee CK (2001) White clover (Trifolium repens L.) cultivar Mink. Aust J Exp Agric 41:705–706

    Article  Google Scholar 

  • Kakes P, Hakvoort HWJ (1994) On the origin of the cyanogenic polymorphism in Trifolium repens L. J Evolut Biol 7:201–215

    Article  Google Scholar 

  • Kapusta I, Janda B, Stochmal A, Oleszek W (2005) Determination of saponins in aerial parts of barrel medic (Medicago truncatula) by liquid chromatography-electrospray ionization/mass spectrometry. J Agric Food Chem 53:7654–7660

    Article  CAS  PubMed  Google Scholar 

  • Lane LA, Ayres JF, Lovett JV (1997) A review of the introduction and use of white clover (Trifolium repens L.) in Australia—significance for breeding objectives. Aust J Exp Agric 37:831–839

    Article  Google Scholar 

  • Lane LA, Ayres JF, Lovett JV (2000) The pastoral significance, adaptive characteristics, and grazing value of white clover (Trifolium repens L.) in dryland environments in Australia: a review. Aust J Exp Agric 40:1033–1046

    Article  Google Scholar 

  • Latch G, Skipp R (1987) Diseases. In: Baker MJ, Williams WM (eds) White clover. C. A. B. International, Wallingford, pp 421–460

    Google Scholar 

  • Lewis CD, Malcolm B, Jacobs JL, Spangenberg G, Smith KF (2013) A method to estimate the potential net benefits of trait improvements in pasture species: transgenic white clover for livestock grazing systems. AFBM J 10:30–45

    Google Scholar 

  • Lundh T (1995) Metabolism of estrogenic isoflavones in domestic animals. Proc Soc Exp Biol Med 208:33–39

    Article  CAS  PubMed  Google Scholar 

  • Lyttleton JW (1973) Proteins and nucleic acids. In: Butler GD, Bailey RW (eds) Chemistry and biochemistry of herbage. Academic Press, London, pp 63–103

    Google Scholar 

  • Mazur WM, Duke JA, Wähälä K, Rasku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. J Nutr Biochem 9:193–200

    Article  CAS  Google Scholar 

  • Moore KJ, Hatfield RD (1994) Carbohydrates and forage quality. In: Fahey GC Jr, Collins M, Mertens DR, Moser LE (eds) Forage quality, evaluation and utilization. American Society of Agronomy Inc; Crop Science Society of America Inc; Soil Science Society of America Inc, Madison, pp 229–280

    Google Scholar 

  • Nelson CJ, Moser LE (1994) Plant factors affecting forage quality. In: Fahey GC Jr, Collins M, Mertens DR, Moser LE (eds) Forage quality, evaluation and utilization. American Society of Agronomy Inc; Crop Science Society of America Inc; Soil Science Society of America Inc, Madison, pp 115–154

    Google Scholar 

  • Norton MR, Johnstone GR (1998) Occurrence of alfalfa mosaic, clover yellow vein, subterranean clover red leaf, and white clover mosaic viruses in white clover throughout Australia. Aust J Agric Res 49:723–728

    Article  Google Scholar 

  • Nowacka J, Oleszek WA (1994) Determination of alfalfa (Medicago sativa) saponins by high-performance liquid chromatography. J Agric Food Chem 42:727–730

    Article  CAS  Google Scholar 

  • Nykänen-Kurki P, Saloniemi H, Kallela K, Saastamoinen I (1993) Phyto-oestrogen content and oestrogenic effect of white clover. In: Frame J (Ed) White clover in Europe: state of the art. Food and Agriculture Organisation (FAO), Aarhus, 28–31 August 1995

  • OGTR (2003) Risk assessment and risk management plan (RARMP) for field evaluation of genetically modified white clover resistant to infection by alfalfa mosaic virus. Office of Gene Technology Regulator (OGTR), Canberra

    Google Scholar 

  • Oleszek WA (1998) Composition and quantitation of saponins in alfalfa (Medicago sativa L.) seedlings. J Agric Food Chem 46:960–962

    Article  CAS  Google Scholar 

  • Oleszek WA, Stochmal A (2002) Triterpene saponins and flavonoids in the seeds of Trifolium species. Phytochemistry 62:165–170

    Article  Google Scholar 

  • Oleszek W, Price KR, Colquhoun IJ, Jurzysta M, Ploszynski M, Fenwick GR (1990) Isolation and identification of alfalfa (Medicago sativa L.) root saponins: their activity in relation to a fungal bioassay. J Agric Food Chem 38:1810–1817

    Article  CAS  Google Scholar 

  • Pagano EM, Rosso BS (2000) Caracterización por cianogénesis de una colección de trébol blanco (Trifolium repens L.) en Pergamino, Argentina. Plant Genet Resour Newsl 123:41–45

    Google Scholar 

  • Panter S, Chu PG, Ludlow E, Garrett R, Kalla R, Jahufer MZZ, de Lucas Arbiza A, Mouradov A, Smith KF, Spangenberg G (2011) Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to alfalfa mosaic virus through the expression of the AMV coat protein. Transgenic Res 21:619–632

    Article  PubMed  Google Scholar 

  • Paplauskiene V, Sprainaitis A (2003) Variability of cyanogenic glucoside content in white clover plants. Biologija 1:85–88

    Google Scholar 

  • Pecetti L, Tava A, Romani M, De Benedetto MG, Corsi P (2006) Variety and environment effects on the dynamics of saponins in lucerne (Medicago sativa L.). Eur J Agron 25:187–192

    Article  CAS  Google Scholar 

  • Richards AJ, Fletcher A (2002) The effects of altitude, aspect, grazing and time on the proportion of cyanogenics in neighbouring populations of Trifolium repens L. (white clover). Heredity 88:432–437

    Article  CAS  PubMed  Google Scholar 

  • Saba N, Drane HM, Hebert CN, Holdsworth RJ (1974) Seasonal variation in oestrogenic activity, coumestrol and formononetin content of white clover. J Agric Sci 83:505–510

    Article  Google Scholar 

  • Sakamoto S, Kofuji S, Kuroyanagi M, Ueno A, Sekita S (1992) Saponins from Trifolium repens. Phytochemistry 31:1773–1777

    Article  CAS  PubMed  Google Scholar 

  • Saloniemi H, Wahala K, Nykanen-Kurki P, Kallela K, Saastamoinen I (1995) Phytoestrogen content and estrogenic effect of legume fodder. Proc Soc Exp Biol Med 208:13–17

    Article  CAS  PubMed  Google Scholar 

  • Seguin P, Zheng W, Souleimanov A (2004) Alfalfa phytoestrogen content: impact of plant maturity and herbage components. J Agron Crop Sci 190:211–217

    Article  CAS  Google Scholar 

  • Shutt DA (1976) The effects of plant oestrogens on animal reproduction. Endeavour 35:110–113

    Article  CAS  PubMed  Google Scholar 

  • Sivesind E, Seguin P (2005) Effects of the environment, cultivar, maturity, and preservation method on red clover isoflavone concentration. J Agric Food Chem 53:6397–6402

    Article  CAS  PubMed  Google Scholar 

  • Smith KF, Flinn PC (1991) Monitoring the performance of a broadbased calibration for measuring the nutritive value of two independent populations of pasture using near infrared reflectance (NIR) spectroscopy. Aust J Exp Agric 31:205–210

    Article  Google Scholar 

  • Søegaard K (1993) Nutritive value of white clover. In: Frame J (ed) White clover in Europe: state of the art. Food and Agriculture Organisation, Tbilisi

    Google Scholar 

  • Stochmal A, Oleszek W (1997) Changes of cyanogenic glucosides in white clover (Trifolium repens L.) during growing season. J Agric Food Chem 45:4333–4336

    Article  CAS  Google Scholar 

  • Stypiñski P (1993) The effect of white clover on chemical composition and nutritive value of companion grasses in grass/clover mixtures. In: Frame J (ed) White clover in Europe: state of the art. Food and Agriculture Organisation (FAO), Aarhus

    Google Scholar 

  • Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Vetter J (1995) Isoflavones in different parts of common Trifolium species. J Agric Food Chem 43:106–108

    Article  CAS  Google Scholar 

  • Vickery PJ, Wheeler JL, Mulcahy C (1987) Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens L.). Aust J Agric Res 38:1053–1059

    Article  CAS  Google Scholar 

  • Walter ED, Bickoff BM, Thompson CR, Robinson CH, Djerassi C (1955) Saponins from Ladino clover (Trifolium repens). J Am Chem Soc 77:4936

    Article  CAS  Google Scholar 

  • West JW (1998) Factors which influence forage quality and effectiveness in dairy rations. Animal Dairy Science Department. University of Georgia-Coastal Plain Experiment Station

  • Wheeler JL, Vickery PJ (1989) Variation in HCN potential among cultivars of white clover (Trifolium repens). Grass Forage Sci 44:107–109

    Article  Google Scholar 

  • Wu Q, Wang M, Simon JE (2003) Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A 1016:195–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was performed as part of a PhD project (AdL) supported by Molecular Plant Breeding CRC. The authors would like to thank all staff at the Victorian Department of Environment of Primary Industries at Hamilton and Bundoora who were involved in plant culture, sample collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Smith.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lucas, A., Panter, S., Mouradov, A. et al. Assessment of nutritional characteristics of virus-resistant transgenic white clover (Trifolium repens L.) grown under field and glasshouse conditions. Mol Breeding 35, 147 (2015). https://doi.org/10.1007/s11032-015-0341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0341-2

Keywords

Navigation