Skip to main content

Advertisement

Log in

Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Periodontitis is an inflammatory process of infectious origin that affects the gums and, in severe cases, destroys connective tissue, leading to loss of the dental organ. Gram-negative Porphyromonas gingivalis bacteria are recovered from patients with chronic periodontitis. The polysaccharide obtained from these bacteria induces the expression of interleukin (IL)-1 beta, tumor necrosis factor, and IL-6. Flavonoids are molecules that participate in the control of inflammatory processes. We studied the role of the flavonoids fisetin, luteolin, myricetin, and morin in inhibiting the activation of mitogen-activated protein kinase (MAPK) and AKT as well as their role in lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) transcription. All four of these flavonoids were found to inhibit MAPK and AKT. Fisetin and luteolin blocked the activation of MAPK and AKT to levels below basal levels. All of these flavonoids also blocked LPS-mediated COX-2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ara T, Kurata K, Hirai K, Uchihashi T, Uematsu T, Imamura Y, Furusawa K, Kurihara S, Wang PL (2009) Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res 44(1):21–27

    Article  PubMed  CAS  Google Scholar 

  2. Dongari-Bagtzoglou AI, Ebersole JL (1996) Production of inflammatory mediators and cytokines by human gingival fibroblasts following bacterial challenge. J Periodontal Res 31(2):90–98

    Article  PubMed  CAS  Google Scholar 

  3. Gutiérrez-Venegas G, Maldonado-Frías S, Ontiveros-Granados A, Kawasaki-Cárdenas P (2005) Role of p38 in nitric oxide synthase and cyclooxygenase expression, and nitric oxide and PGE2 synthesis in human gingival fibroblasts stimulated with lipopolysaccharides. Life Sci 77(1):60–73

    Article  PubMed  Google Scholar 

  4. Sismey-Durrant HJ, Hopps RM (1991) Effect of lipopolysaccharide from Porphyromonas gingivalis on prostaglandin E2 and interleukin-1-beta release from rat periosteal and human gingival fibroblasts in vitro. Oral Microbiol Immunol 6(6):378–380

    Article  PubMed  CAS  Google Scholar 

  5. Sundararaj KP, Samuvel DJ, Li Y, Sanders JJ, Lopes-Virella MF, Huang Y (2009) Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture: cross-talking between fibroblasts and U937 macrophages exposed to high glucose. J Biol Chem 284(20):13714–13724

    Article  PubMed  CAS  Google Scholar 

  6. Inomata M, Into T, Murakami Y (2010) Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci 118(6):574–581

    Article  PubMed  CAS  Google Scholar 

  7. Casarin RC, Ribeiro Edel P, Mariano FS, Nociti FH Jr, Casati MZ, Gonçalves RB (2010) Levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, inflammatory cytokines and species-specific immunoglobulin G in generalized aggressive and chronic periodontitis. J Periodontal Res 45(5):635–642

    Article  PubMed  CAS  Google Scholar 

  8. Zhang D, Chen L, Li S, Zhiyuan G, Yan J (2008) Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun 14(2):99–107

    Article  Google Scholar 

  9. Souza PP, Palmqvist P, Lundgren I, Lie A, Costa-Neto CM, Lundberg P, Lerner UH (2010) Stimulation of IL-6 cytokines in fibroblasts by Toll-like receptors 2. J Dent Res 89(8):802–807

    Article  PubMed  CAS  Google Scholar 

  10. Rock FL, Hardiman G, Timans JC, Kastelein R, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci 95(2):588–593

    Article  PubMed  CAS  Google Scholar 

  11. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  PubMed  CAS  Google Scholar 

  12. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  13. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274(16):10689–10692

    Article  PubMed  CAS  Google Scholar 

  14. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164(2):966–972

    PubMed  CAS  Google Scholar 

  15. Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ (1999) The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163(12):6748–6755

    PubMed  CAS  Google Scholar 

  16. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189(110):1777–1782

    Article  PubMed  CAS  Google Scholar 

  17. Arimilli S, Johnson JB, Alexander-Miller MA, Parks GD (2007) TLR-4 and -6 agonists reverse apoptosis and promote maturation of simian virus 5-infected human dendritic cells through NFkB-dependent pathways. Virology 365(1):144–156

    Article  PubMed  CAS  Google Scholar 

  18. Zhai Y, Shen XD, O’Connell R, Gao F, Lassman C, Busuttil RW, Cheng G, Kupiec-Weglinski JW (2004) Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 173(120):7115–7119

    PubMed  CAS  Google Scholar 

  19. Kawai T, Takeuchi O, Fujita T, Inoue J, Mühlradt PF, Sato S, Hoshino K, Akira S (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167(10):5887–5894

    PubMed  CAS  Google Scholar 

  20. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M (1999) Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 274(12):7611–7614

    Article  PubMed  CAS  Google Scholar 

  21. Rhee SH, Hwang D (2000) Murine Toll-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J Biol Chem 275(440):34035–34040

    Article  PubMed  CAS  Google Scholar 

  22. Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, Chiu WT, Lin CH (2005) Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115(3):366–374

    Article  PubMed  CAS  Google Scholar 

  23. Villar A, Gasco MA, Alcaraz MJ (1984) Anti-inflammatory and anti-ulcer properties of hypolaetin-8-glucoside, a novel plant flavonoid. J Pharm Pharmacol 36(12):820–823

    Article  PubMed  CAS  Google Scholar 

  24. Hasani A, Leighl N (2011) Classification and toxicities of vascular disrupting agents. Clin Lung Cancer 12(1):18–25

    Article  PubMed  CAS  Google Scholar 

  25. Ban M, Tonai T, Kohno T, Matsumoto K, Horie T, Yamamoto S, Moskowitz MA, Levine LA (1989) Flavonoid inhibitor of 5-lipoxygenase inhibits leukotriene production following ischemia in gerbil brain. Stroke 20(2):248–252

    Article  PubMed  CAS  Google Scholar 

  26. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37(5):837–841

    Article  PubMed  CAS  Google Scholar 

  27. Davila JC, Lenherr A, Acosta D (1989) Protective effect of flavonoids on drug-induced hepatotoxicity in vitro. Toxicology 57(3):267–286

    Article  PubMed  CAS  Google Scholar 

  28. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10(6):1003–1008

    Article  PubMed  CAS  Google Scholar 

  29. Gitika B, Sai Ram M, Sharma SK, Ilavazhagan G, Banerjee PK (2006) Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic Res 40(1):95–102

    Article  PubMed  CAS  Google Scholar 

  30. Lee JC, Lee KY, Kim J, Na CS, Jung NC, Chung GH, Jang YS (2004) Extract from Rhus verniciflua Stokes is capable of inhibiting the growth of human lymphoma cells. Food Chem Toxicol 42(9):1383–1388

    Article  PubMed  CAS  Google Scholar 

  31. Lu X, Jung J, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JH (2005) Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr 135(12):2884–2890

    PubMed  CAS  Google Scholar 

  32. Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci 103(44):16568–16573

    Article  PubMed  CAS  Google Scholar 

  33. Tzeng SH, Ko WC, Ko FN, Teng CM (1991) Inhibition of platelet aggregation by some flavonoids. Thromb Res 64(1):91–100

    Article  PubMed  CAS  Google Scholar 

  34. Vladutiu GD, Middleton E Jr (1986) Effects of flavonoids on enzyme secretion and endocytosis in normal and mucolipidosis II fibroblasts. Life Sci 39(8):717–726

    Article  PubMed  CAS  Google Scholar 

  35. Tordera M, Ferrándiz ML, Alcaraz MJ (1994) Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Z Naturforsch C 49(3–4):235–240

    PubMed  CAS  Google Scholar 

  36. Chien CS, Shen KH, Huang JS, Ko SC, Shih YW (2010) Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells. Mol Cell Biochem 333(1–2):169–180

    Article  PubMed  CAS  Google Scholar 

  37. Kim JS, Jobin C (2005) The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 115(3):375–387

    Article  PubMed  CAS  Google Scholar 

  38. Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T, Yano H, Kojiro M, Sata M (2006) Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 66(9):4826–4834

    Article  PubMed  CAS  Google Scholar 

  39. Mittra B, Saha A, Chowdhury AR, Pal C, Mandal S, Mukhopadhyay S, Bandyopadhyay S, Majumder HK (2000) Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 6(6):527–541

    PubMed  CAS  Google Scholar 

  40. Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, Maldonado-Frías S (2006) Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur J Pharmacol 541(1–2):10–95

    Google Scholar 

  41. Hämäläinen M, Nieminen R, Asmawi MZ, Vuorela P, Vapaatalo H, Moilanen E (2011) Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages. Planta Med 77(13):1504–1511

    Article  PubMed  Google Scholar 

  42. Gutiérrez-Venegas G, Jiménez-Estrada M, Maldonado S (2007) The effect of flavonoids on transduction mechanisms in lipopolysaccharide-treated human gingival fibroblasts. Int Immunopharmacol 7(9):1199–1210

    Article  PubMed  Google Scholar 

  43. Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, Maldonado-Frías S (2006) Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur J Pharmacol 541(1–2):95–105

    Article  PubMed  Google Scholar 

  44. Bartold PM (1987) Proteoglycans of the periodontium. Structure, role and function. J Periodontal Res 22:431–444

    Article  PubMed  CAS  Google Scholar 

  45. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  46. Fort P, Marty L, Piechaczyk M, Sabrouty SE, Dani C, Jeanteur P, Blanchard JM (1985) Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res 13:1431–1442

    Article  PubMed  CAS  Google Scholar 

  47. Oido-Mori M, Rezzonico R, Wang PL, Kowashi Y, Dayer JM, Baehni PC, Chizzolini C (2001) Porphyromonas gingivalis gingipain-R enhances interleukin-8 but decreases gamma interferon-inducible protein 10 production by human gingival fibroblasts in response to T-cell contact. Infect Immun 69(7):4493–4501

    Article  PubMed  CAS  Google Scholar 

  48. Martin M, Rehani K, Jope RS, Michalek SM (2010) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784

    Article  Google Scholar 

  49. Suliman HB, Sweeney TE, Withers CM, Piantadosi CA (2005) Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Sci 123(Pt 15):2565–2575

    Google Scholar 

  50. Yang H, Young DW, Gusovsky F, Chow JC (2000) Cellular events mediated by lipopolysaccharide-stimulated Toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J Biol Chem 275(27):20861–20866

    Article  PubMed  CAS  Google Scholar 

  51. Chen CC, Wang JK (1999) p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol 55(3):481–488

    PubMed  CAS  Google Scholar 

  52. Chen C, Chen YH, Lin WW (1999) Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology 97(1):124–129

    Article  PubMed  CAS  Google Scholar 

  53. Shen T, Park YC, Kim SH, Lee J, Cho JY (2010) Nuclear factor-kappaB/signal transducers and activators of transcription-1-mediated inflammatory responses in lipopolysaccharide-activated macrophages are a major inhibitory target of kahweol, a coffee diterpene. Biol Pharm Bull 33(7):1159–1164

    Article  PubMed  CAS  Google Scholar 

  54. Ahn SC, Kim GY, Kim JH, Baik SW, Han MK, Lee HJ, Moon DO, Lee CM, Kang JH, Kim BH, Oh YH, Park YM (2004) Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and NF-kappaB. Biochem Biophys Res Commun 313(1):148–155

    Article  PubMed  CAS  Google Scholar 

  55. Shen T, Park YC, Kim SH, Lee J, Cho JY (2010) Nuclear factor-kappaB/signal transducers and activators of transcription-1-mediated inflammatory responses in lipopolysaccharide-activated macrophages are a major inhibitory target of kahweol, a coffee diterpene. Biol Pharm Bull 33(7):1159–1164

    Article  PubMed  CAS  Google Scholar 

  56. Into T, Inomata M, Shibata K, Murakami Y (2010) Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4-triggered expression of IL-6, IL-8 and CXCL10 in human gingival fibroblasts. Cell Immunol 264(1):104–109

    Article  PubMed  CAS  Google Scholar 

  57. O’Neill PG, Ford-Hutchinson AW (1993) Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett 330:156–160

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Grant from Dirección General de Personal Académico (DGAPA) PAPITT IN209412-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Gutiérrez-Venegas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Venegas, G., Contreras-Sánchez, A. Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts. Mol Biol Rep 40, 477–485 (2013). https://doi.org/10.1007/s11033-012-2083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2083-0

Keywords

Navigation