Skip to main content
Log in

Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-d-xylulose-5-phosphate synthase, 1-Deoxy-d-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kaileh M, Vanden Berghe W, Boone E, Essawi T, Haegeman G (2007) Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J Ethnopharmacol 113(3):510–516. doi:10.1016/j.jep.2007.07.008

    Article  PubMed  Google Scholar 

  2. Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, Kaul SC (2007) Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13(7):2298–2306. doi:10.1158/1078-0432.CCR-06-0948

    Article  PubMed  CAS  Google Scholar 

  3. Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Roy R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71(10):1085–1094. doi:10.1016/j.phytochem.2010.04.001

    Article  PubMed  CAS  Google Scholar 

  4. Sangwan RS, Chaurasiya ND, Lal P, Misra L, Uniyal GC, Tuli R, Sangwan NS (2007) Withanolide A biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera DUNAL), a main medicinal plant in Ayurveda. Chem Pharm Bull (Tokyo) 55(9):1371–1375

    Article  CAS  Google Scholar 

  5. Gupta N, Sharma P, Kumar RJS, Vishwakarma RK, Khan BM (2012) Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol Biol Rep 39(9):8803–8812. doi:10.1007/s11033-012-1743-4

    Article  PubMed  CAS  Google Scholar 

  6. Gupta P, Akhtar N, Tewari SK, Sangwan RS, Trivedi PK (2011) Differential expression of farnesyl diphosphate synthase gene from Withania somnifera in different chemotypes and in response to elicitors. Plant Growth Regul 65(1):93–100. doi:10.1007/s10725-011-9578-x

    Article  CAS  Google Scholar 

  7. Chen X, Wang X, Li Z, Kong L, Liu G, Fu J, Wang A (2012) Molecular cloning, tissue expression and protein structure prediction of the porcine 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR) gene. Gene 495(2):170–177. doi:10.1016/j.gene.2011.12.051

    Article  PubMed  CAS  Google Scholar 

  8. Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93(6):2189–2206. doi:10.1021/Cr00022a009

    Article  CAS  Google Scholar 

  9. Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129(3):1095–1106. doi:10.1104/pp.001438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Kribii R, Arro M, DelArco A, Gonzalez V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase—Involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur J Biochem 249(1):61–69. doi:10.1111/j.1432-1033.1997.00061.x

    Article  PubMed  CAS  Google Scholar 

  11. Roy S, Chauhan R, Maheshwari N, Gupta S, Gupta DK, Sharma A (2011) In silico approaches in comparative genomics, structure prediction and functional characterization of secondary metabolite proteins of Mentha sp. Plant Omics 4(7):354–363

    CAS  Google Scholar 

  12. Roy S, Maheshwari N, Chauhan R, Sen NK, Sharma A (2011) Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation 6(8):315–319

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar V, Kumar CS, Hari G, Venugopal NK, Vijendra PD, Basappa GB (2013) Homology modeling and docking studies on oxidosqualene cyclases associated with primary and secondary metabolism of Centella asiatica. Springer Plus 2:189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(Database issue):D225–229. doi:10.1093/nar/gkq1189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Fong JH, Marchler-Bauer A (2008) Protein subfamily assignment using the Conserved Domain Database. BMC Res Notes 1:114. doi:10.1186/1756-0500-1-114

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guruprasad KRB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4(2):155–161

    Article  PubMed  CAS  Google Scholar 

  17. Ikai AJ (1980) Thermo stability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    PubMed  CAS  Google Scholar 

  18. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132 0022-2836(82)90515-0[pii]

    Article  PubMed  CAS  Google Scholar 

  19. Sen TZ, Jernigan RL, Garnier J, Kloczkowski A (2005) GOR V server for protein secondary structure prediction. Bioinformatics 21(11):2787–2788. doi:10.1093/bioinformatics/bti408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Combet C, Jambon M, Deleage G, Geourjon C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18(1):213–214

    Article  PubMed  CAS  Google Scholar 

  21. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723. doi:10.1002/elps.1150181505

    Article  PubMed  CAS  Google Scholar 

  22. Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophys J 5(6):909–933. doi:10.1016/S0006-3495(65)86759-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  PubMed  CAS  Google Scholar 

  24. Sanchita Chauhan R, Soni G, Sudhamalla B, Sharma A (2013) Docking and molecular dynamics studies of peptide inhibitors of ornithine decarboxylase: a rate-limiting enzyme for the metabolism of Fusarium solani. J Biomol Struct Dyn 31(8):874–887. doi:10.1080/07391102.2012.718526

    Article  PubMed  CAS  Google Scholar 

  25. Narvaez JA, Canche BBC, Perez PF, Madrid RR (2001) Differential expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) during flower and fruit development of Bixa orellana. J Plant Physiol 158(11):1471–1477. doi:10.1078/0176-1617-00614

    Article  CAS  Google Scholar 

  26. Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276(25):22901–22909. doi:10.1074/jbc.M100854200

    Article  PubMed  CAS  Google Scholar 

  27. Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13(2):234–240. doi:10.1016/j.ymben.2010.11.005

    Article  PubMed  CAS  Google Scholar 

  28. Hasunuma T, Takeno S, Hayashi S, Sendai M, Bamba T, Yoshimura S, Tomizawa KI, Fukusaki E, Miyake C (2008) Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. J Biosci Bioeng 105(5):518–526. doi:10.1263/Jbb.105.518

    Article  PubMed  CAS  Google Scholar 

  29. Lan JB, Yu RC, Yu YY, Fan YP (2013) Molecular cloning and expression of Hedychium coronarium farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral and wounding/herbivory induced leaf volatile sesquiterpenoids. Gene 518(2):360–367. doi:10.1016/j.gene.2013.01.007

    Article  PubMed  CAS  Google Scholar 

  30. Grover A, Samuel G, Bisaria VS, Sundar D (2013) Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng 115(6):680–685. doi:10.1016/j.jbiosc.2012.12.011

    Article  PubMed  CAS  Google Scholar 

  31. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4(2):155–161

    Article  CAS  Google Scholar 

  32. Darabi M, Masoudi-Nejad A, Nemat-Zadeh G (2012) Bioinformatics study of the 3-hydroxy-3-methylglotaryl-coenzyme A reductase (HMGR) gene in Gramineae. Mol Biol Rep 39(9):8925–8935. doi:10.1007/s11033-012-1761-2

    Article  PubMed  CAS  Google Scholar 

  33. Razdan S, Bhat WW, Rana S, Dhar N, Lattoo SK, Dhar RS, Vishwakarma RA (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40(2):905–916. doi:10.1007/s11033-012-2131-9

    Article  PubMed  CAS  Google Scholar 

  34. Dharni S, Sanchita, Samad A, Sharma A, Patra DD (2014) The interaction pattern between a homology model of 40S ribosomal S9 protein of Rhizoctonia solani and 1-Hydroxyphenaize by docking study. Biomed Res Int 2014:1–6

  35. Dharni S, Sanchita, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem 62(26):6138–6146

    Article  PubMed  CAS  Google Scholar 

  36. Castrignano T, De Meo PD, Cozzetto D, Talamo IG, Tramontano A (2006) The PMDB protein model database. Nucleic Acids Res 34(Database issue):D306–309. doi:10.1093/nar/gkj105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

One of the authors, (Sanchita) is thankful to CSIR, New Delhi, India for CSIR-SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanchita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2676 kb)

Supplementary material 2 (TIFF 2983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchita, Singh, S. & Sharma, A. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera . Mol Biol Rep 41, 7323–7330 (2014). https://doi.org/10.1007/s11033-014-3618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3618-3

Keywords

Navigation