Skip to main content

Advertisement

Log in

The Warburg effect: molecular aspects and therapeutic possibilities

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

It has been about nine decades since the proposal of Otto Warburg on the metabolism of cancer cells. Unlike normal cells which undergo glycolysis and oxidative phosphorylation in the presence of oxygen, proliferating and cancer cells exhibit an increased uptake of glucose and increased rate of glycolysis and predominantly undergo lactic acid fermentation. Whether this phenomenon is the consequence of genetic dysregulation in cancer or is the cause of cancer still remains unknown. However, there is certainly a strong link between the genetic factors, epigenetic modulation, cancer immunosurveillance and the Warburg effect, which will be discussed in this review. Dichloroacetate and 3-bromopyruvate are among the substances that have been studied as potential cancer therapies. With our expanding knowledge of cellular metabolism, therapies targeting the Warburg effect appear very promising. This review discusses different aspects of these emerging therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Krebs HA (1972) Otto Heinrich Warburg. 1883–1970. Biogr Mem Fellows R Soc 18:628–699. doi:10.1098/rsbm.1972.0023

    Article  Google Scholar 

  2. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/science.1160809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233

  5. Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov D, Wirtz KW, Chernyak BV, Skulachev VP (2004) “Wages of fear”: transient threefold decrease in intracellular ATP level imposes apoptsis. Biochim Biophys Acta 1658:141–147

  6. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159. doi:10.1146/annurev.nu.15.070195.001025

    Article  CAS  PubMed  Google Scholar 

  7. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350. doi:10.1073/pnas.0709747104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24(50):7435–7442

    Article  CAS  PubMed  Google Scholar 

  9. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. doi:10.1016/j.cmet.2006.02.002

    Article  PubMed  Google Scholar 

  10. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197. doi:10.1016/j.cmet.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  11. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145(5):732–744. doi:10.1016/j.cell.2011.03.054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, Campos C, Yannuzzi N, Osborne JR, Linkov I, Kastenhuber ER, Taschereau R, Plaisier SB, Tran C, Heguy A, Wu H, Sander C, Phelps ME, Brennan C, Port E, Huse JT, Graeber TG, Mellinghoff IK (2011) 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res 71(15):5164–5174. doi:10.1158/0008-5472.can-10-4633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800. doi:10.1074/jbc.C000023200

    Article  CAS  PubMed  Google Scholar 

  14. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94(13):6658–6663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56. doi:10.1038/nrc2274

    Article  CAS  PubMed  Google Scholar 

  16. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. doi:10.1016/j.cell.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  17. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653. doi:10.1126/science.1126863

    Article  CAS  PubMed  Google Scholar 

  18. Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 23(4):352–361. doi:10.1016/j.semcdb.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  19. Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY, Dwyer MA, Nelson ER, Pollizzi KN, Ilkayeva O, Giguere V, Zuercher WJ, Powell JD, Shinohara ML, McDonnell DP, Rathmell JC (2011) Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci USA 108(45):18348–18353. doi:10.1073/pnas.1108856108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Villena JA, Kralli A (2008) ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol Metab 19(8):269–276. doi:10.1016/j.tem.2008.07.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP (2011) The metabolic regulator ERRalpha, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 20(4):500–510. doi:10.1016/j.ccr.2011.08.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  23. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong K-K (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356. http://www.nature.com/nm/journal/v14/n12/suppinfo/nm.1890_S1.html

  24. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. doi:10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  25. Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27

    CAS  PubMed  Google Scholar 

  26. Andersen MH, Pedersen LØ, Capeller B, Bröcker E-B, Becker JC, thor Straten P (2001) Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 61(16):5964–5968

    CAS  PubMed  Google Scholar 

  27. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1(2):119–126

    Article  CAS  PubMed  Google Scholar 

  28. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell–mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188(12):2375–2380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N (2013) From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol 45(1):106–113. doi:10.1016/j.biocel.2012.04.024

    Article  CAS  PubMed  Google Scholar 

  31. Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, Andreesen R, Gottfried E, Kreutz MP (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J immunol 184(3):1200–1209. doi:10.4049/jimmunol.0902584

    Article  CAS  PubMed  Google Scholar 

  32. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819. doi:10.1182/blood-2006-07-035972

    Article  CAS  PubMed  Google Scholar 

  33. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021. doi:10.1182/blood-2005-05-1795

    Article  CAS  PubMed  Google Scholar 

  34. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J immunol 186(6):3299–3303. doi:10.4049/jimmunol.1003613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39(2):453–463. doi:10.3892/ijo.2011.1055

    CAS  PubMed  Google Scholar 

  36. Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254(8):2669–2676

    CAS  PubMed  Google Scholar 

  37. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64(3):985–993

    Article  CAS  PubMed  Google Scholar 

  38. Charni S, de Bettignies G, Rathore MG, Aguilo JI, van den Elsen PJ, Haouzi D, Hipskind RA, Enriquez JA, Sanchez-Beato M, Pardo J, Anel A, Villalba M (2010) Oxidative phosphorylation induces de novo expression of the MHC class I in tumor cells through the ERK5 pathway. J immunol 185(6):3498–3503

    Article  CAS  PubMed  Google Scholar 

  39. Whitehouse S, Cooper RH, Randle PJ (1974) Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 141(3):761–774

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39(3):223–229. doi:10.1007/s10863-007-9080-3

    Article  CAS  PubMed  Google Scholar 

  41. Downs JA (2007) Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 26(56):7765–7772. doi:10.1038/sj.onc.1210874

    Article  CAS  PubMed  Google Scholar 

  42. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9(12):923–937. doi:10.1038/nrg2466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hendrich B, Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet TIG 19(5):269–277. doi:10.1016/s0168-9525(03)00080-5

    Article  CAS  Google Scholar 

  44. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3(9):662–673. doi:10.1038/nrg887

    Article  CAS  PubMed  Google Scholar 

  45. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi:10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  46. Cody DT 2nd, Huang Y, Darby CJ, Johnson GK, Domann FE (1999) Differential DNA methylation of the p16 INK4A/CDKN2A promoter in human oral cancer cells and normal human oral keratinocytes. Oral Oncol 35(5):516–522

    Article  CAS  PubMed  Google Scholar 

  47. Oshiro MM, Futscher BW, Lisberg A, Wozniak RJ, Klimecki WT, Domann FE, Cress AE (2005) Epigenetic regulation of the cell type-specific gene 14-3-3sigma. Neoplasia 7(9):799–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lal G, Padmanabha L, Provenzano M, Fitzgerald M, Weydert J, Domann FE (2008) Regulation of 14-3-3sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation. Cancer Lett 267(1):165–174. doi:10.1016/j.canlet.2008.03.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Magewu AN, Jones PA (1994) Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer. Mol Cell Biol 14(6):4225–4232

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Tornaletti S, Pfeifer GP (1995) Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10(8):1493–1499

    CAS  PubMed  Google Scholar 

  51. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400. doi:10.1038/ng1531

    Article  CAS  PubMed  Google Scholar 

  52. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019. doi:10.1073/pnas.180316197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101(5):1241–1246. doi:10.1073/pnas.0307708100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227(4685):375–381

    Article  CAS  PubMed  Google Scholar 

  55. Hitchler MJ, Domann FE (2009) Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 47(2):115–127. doi:10.1016/j.freeradbiomed.2009.04.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444(7121):868–874. doi:10.1038/nature05486

    Article  CAS  PubMed  Google Scholar 

  57. Lan F, Nottke AC, Shi Y (2008) Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20(3):316–325. doi:10.1016/j.ceb.2008.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Goel A, Mathupala SP, Pedersen PL (2003) Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 278(17):15333–15340. doi:10.1074/jbc.M300608200

    Article  CAS  PubMed  Google Scholar 

  59. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555(1–3):14–20

    Article  CAS  PubMed  Google Scholar 

  60. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786. doi:10.1038/sj.onc.1209603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Wick AN, Drury DR, Nakada HI, Wolfe JB (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224(2):963–969

    CAS  PubMed  Google Scholar 

  62. Geschwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 4(3):449–457. doi:10.1586/14737140.4.3.449

    Article  CAS  PubMed  Google Scholar 

  63. Maher JC, Krishan A, Lampidis TJ (2004) Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-d-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53(2):116–122. doi:10.1007/s00280-003-0724-7

    Article  CAS  PubMed  Google Scholar 

  64. Buijs M, Vossen JA, Geschwind J-FH, Ishimori T, Engles JM, Acha-Ngwodo O, Wahl RL, Vali M (2009) Specificity of the anti-glycolytic activity of 3-bromopyruvate confirmed by FDG uptake in a rat model of breast cancer. Invest New Drugs 27(2):120–123

    Article  CAS  PubMed  Google Scholar 

  65. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324(1):269–275

    Article  CAS  PubMed  Google Scholar 

  66. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP, Korsmeyer SJ (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424(6951):952–956. doi:10.1038/nature01825

    Article  CAS  PubMed  Google Scholar 

  67. Ganapathy-Kanniappan S, Geschwind J-FH, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 29(12):4909–4918

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2(1):94–101

    Article  PubMed  Google Scholar 

  69. Vali M, Vossen JA, Buijs M, Engles JM, Liapi E, Ventura VP, Khwaja A, Acha-Ngwodo O, Shanmugasundaram G, Syed L, Wahl RL, Geschwind JF (2008) Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J Pharmacol Exp Ther 327(1):32–37. doi:10.1124/jpet.108.141093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    CAS  PubMed  Google Scholar 

  71. Pan JG, Mak TW (2007) Metabolic targeting as an anticancer strategy: dawn of a new era? Sci STKE Signal Transduct Knowl Environ 2007(381):pe14. doi:10.1126/stke.3812007pe14

    Google Scholar 

  72. Stacpoole PW, Lorenz AC, Thomas RG, Harman EM (1988) Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 108(1):58–63

    Article  CAS  PubMed  Google Scholar 

  73. Michelakis E, Webster L, Mackey J (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99(7):989–994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A Mitochondria-K + Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell 11(1):37–51

    Article  CAS  PubMed  Google Scholar 

  75. Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I (2008) Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 109(3):394–402. doi:10.1016/j.ygyno.2008.01.038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ (2008) Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 68(11):1223–1231. doi:10.1002/pros.20788

    Article  CAS  PubMed  Google Scholar 

  77. Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci USA 104(22):9445–9450. doi:10.1073/pnas.0611662104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Howlett RA, Heigenhauser GJ, Hultman E, Hollidge-Horvat MG, Spriet LL (1999) Effects of dichloroacetate infusion on human skeletal muscle metabolism at the onset of exercise. Am J Physiol 277(1 Pt 1):E18–E25

    CAS  PubMed  Google Scholar 

  79. Parolin ML, Spriet LL, Hultman E, Matsos MP, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ (2000) Effects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia. Am J Physiol Endocrinol Metab 279(4):E752–E761

    CAS  PubMed  Google Scholar 

  80. Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43(7):683–691

    Article  CAS  PubMed  Google Scholar 

  81. Mori M, Yamagata T, Goto T, Saito S, Momoi MY (2004) Dichloroacetate treatment for mitochondrial cytopathy: long-term effects in MELAS. Brain Dev 26(7):453–458. doi:10.1016/j.braindev.2003.12.009

    Article  PubMed  Google Scholar 

  82. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S (1992) A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med 327(22):1564–1569

    Article  CAS  PubMed  Google Scholar 

  83. Spruijt L, Naviaux RK, McGowan KA, Nyhan WL, Sheean G, Haas RH, Barshop BA (2001) Nerve conduction changes in patients with mitochondrial diseases treated with dichloroacetate. Muscle Nerve 24(7):916–924

    Article  CAS  PubMed  Google Scholar 

  84. Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn NM, Gilmore RL, Greer M, Henderson GN, Hutson AD, Neiberger RE, O’Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117(5):1519–1531. doi:10.1542/peds.2005-1226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

TCK is supported by an Australian Research Council Future Fellowship and the Epigenomic Medicine Laboratory is supported by McCord Research. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, H., Tortorella, S.M., Ververis, K. et al. The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 42, 825–834 (2015). https://doi.org/10.1007/s11033-014-3764-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3764-7

Keywords

Navigation