Skip to main content

Advertisement

Log in

Introduction to the molecular basis of cancer metabolism and the Warburg effect

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In differentiated normal cells, the conventional route of glucose metabolism involves glycolysis, followed by the citric acid cycle and electron transport chain to generate usable energy in the form of adenosine triphosphate (ATP). This occurs in the presence of oxygen. In hypoxic conditions, normal cells undergo anaerobic glycolysis to yield significantly less energy producing lactate as a product. As first highlighted in the 1920s by Otto Warburg, the metabolism exhibited by tumor cells involves an increased rate of aerobic glycolysis, known as the Warburg effect. In aerobic glycolysis, pyruvate molecules yielded from glycolysis are converted into fewer molecules of ATP even in the presence of oxygen. Evidence indicates that the reasons as to why tumor cells undergo aerobic glycolysis include: (1) the shift in priority to accumulate biomass rather than energy production, (2) the evasion of apoptosis as fewer reactive oxygen species are released by the mitochondria and (3) the production of lactate to further fuel growth of tumors. In this mini-review we discuss emerging molecular aspects of cancer metabolism and the Warburg effect. Aspects of the Warburg effect are analyzed in the context of the established hallmarks of cancer including the role of oncogenes and tumor suppressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68(3):475–478. doi:10.1007/s12013-013-9750-1

    Article  CAS  PubMed  Google Scholar 

  4. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283(5407):1488–1493

    Article  CAS  PubMed  Google Scholar 

  5. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discovery 9(6):447–464

    Article  CAS  Google Scholar 

  6. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27(1):441–464

    Article  CAS  PubMed  Google Scholar 

  7. Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66(18):8927–8930

    Article  CAS  PubMed  Google Scholar 

  8. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The Biology of Cancer: metabolic reprogramming fuel cells growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  9. Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18(6):598–608

    Article  CAS  PubMed  Google Scholar 

  10. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  11. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70(3):859–862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21(3):297–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344

    Article  CAS  PubMed  Google Scholar 

  14. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23(5):537–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2):24S–42S

    Article  CAS  PubMed  Google Scholar 

  16. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899

    Article  CAS  PubMed  Google Scholar 

  17. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    Article  CAS  PubMed  Google Scholar 

  18. Kastan MB, Canman CE, Leonard CJ (1995) P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 14(1):3–15

    Article  CAS  PubMed  Google Scholar 

  19. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70(6):923–935

    Article  CAS  PubMed  Google Scholar 

  20. Toshiyuki M, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299

    Article  Google Scholar 

  21. Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223(2):116–126

    Article  CAS  PubMed  Google Scholar 

  22. Schaal C, Pillai S, Chellappan SP (2014) The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res 121:147–182. doi:10.1016/b978-0-12-800249-0.00004-4

    Article  CAS  PubMed  Google Scholar 

  23. Nevins JR, Chellappan SP, Mudryj M, Hiebert S, Devoto S, Horowitz J, Hunter T, Pines J (1991) E2F transcription factor is a target for the RB protein and the cyclin A protein. Cold Spring Harb Symp Quant Biol 56:157–162

    Article  CAS  PubMed  Google Scholar 

  24. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65(6):1053–1061

    Article  CAS  PubMed  Google Scholar 

  25. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112

    Article  CAS  PubMed  Google Scholar 

  26. Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14(3):459–468. doi:10.1089/ars.2010.3363

    Article  CAS  PubMed  Google Scholar 

  27. Hanahan D, Weinberg RA (2000) The Hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  29. Rigoulet M, Yoboue ED, Anne D (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxidants & Redox Signalling 14(3):459–468

    Article  CAS  Google Scholar 

  30. Li ZY, Yang Y, Ming M, Liu B (2011) Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 414(1):5–8. doi:10.1016/j.bbrc.2011.09.046

    Article  CAS  PubMed  Google Scholar 

  31. Li ZY, Yang Y, Ming M, Bo L (2011) Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 414(1):5–8

    Article  CAS  PubMed  Google Scholar 

  32. Subarsky P, Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20(3):237–250

    Article  CAS  PubMed  Google Scholar 

  33. Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP (2011) Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor. Breast Cancer Res 13(4):213

    Article  PubMed Central  PubMed  Google Scholar 

  34. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug Resistance and the Solid Tumor Microenvironment. J Natl Cancer Inst 99(19):1441–1454

    Article  PubMed  Google Scholar 

  35. Gabbiani G, Ryan GB, Majne G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5):549–550

    Article  CAS  PubMed  Google Scholar 

  36. Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316(17):2713–2722. doi:10.1016/j.yexcr.2010.04.032

    Article  PubMed  Google Scholar 

  37. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363. doi:10.1038/nrm809

    Article  CAS  PubMed  Google Scholar 

  38. Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31(1–2):195–208

    Article  PubMed  Google Scholar 

  39. Dvorak HF (1986) Tumors: wounds that do not heal. similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  CAS  PubMed  Google Scholar 

  40. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  41. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331

    Article  CAS  PubMed  Google Scholar 

  42. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and Beyond. Cell 134(5):703–707

    Article  CAS  PubMed  Google Scholar 

  43. Zhivotovsky B, Orrenius S (2009) The Warburg Effect returns to the cancer stage. Semin Cancer Biol 19(1):1–3

    Article  PubMed  Google Scholar 

  44. Rattigan Y, Patel B, Ackerstaff E, Sukenick G, Koutcher J, Glod J, Banerjee D (2012) Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 318(4):326–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ristow M (2006) Oxidative metabolism in cancer growth. Curr Opin in Nutr Metabol Care 9(4):339–345

    Article  CAS  Google Scholar 

  46. Fantin VR, St-Pierre J, Philip L (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    Article  CAS  PubMed  Google Scholar 

  47. Brauer H, Makowski L, Hoadley K, Casbas-Hernandez P, Lang L, Romàn-Pèrez E, D’Arcy M, Freemerman A, Perou C, Troester M (2013) Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 19(3):571–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TCK is supported by an Australian Research Council Future Fellowship and the Epigenomic Medicine Laboratory is supported by McCord Research. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, D.C., Ververis, K., Tortorella, S.M. et al. Introduction to the molecular basis of cancer metabolism and the Warburg effect. Mol Biol Rep 42, 819–823 (2015). https://doi.org/10.1007/s11033-015-3857-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3857-y

Keywords

Navigation