Skip to main content
Log in

Lactate as an insidious metabolite due to the Warburg effect

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Although oncogenetics remains a critical component of cancer biology and therapeutic research, recent interest has been taken towards the non-genetic features of tumour development and progression, such as cancer metabolism. Specifically, it has been observed that tumour cells are inclined to preferentially undergo glycolysis despite presence of adequate oxygen. First reported by Otto Warburg in the 1920s, and now termed the ‘Warburg effect’, this aberrant metabolism has become of particular interest due to the prevalence of the fermentation phenotype in a variety of cancers studied. Consequently, this phenotype has proven to play a pivotal role in cancer proliferation. As such Warburg’s observations are now being integrated within the modern paradigms of cancer and in this review we explore the role of lactate as an insidious metabolite due to the Warburg effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Warburg O (1956) On the origin of cancer cells. Science 3191:309. doi:10.2307/1750066

    Article  Google Scholar 

  3. Berg J, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. Freeman, New York

    Google Scholar 

  4. Chiu M, Ottaviani L, Bianchi MG, Franchi-Gazzola R, Bussolati O (2012) Towards a metabolic therapy of cancer? Acta Bio-Medica de l Ateneo Parmense 83(3):168–176

    CAS  Google Scholar 

  5. Stettner AI, Segre D The cost of efficiency in energy metabolism. Proceedings of the National Academy of Sciences of the United States of America 110 (24):9629-9630

  6. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  7. Floor SL, Dumont JE, Maenhaut C, Raspe E (2012) Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med 18:509–515

    Article  CAS  PubMed  Google Scholar 

  8. Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  Google Scholar 

  9. Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19(1):25–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Volschenk H, van Vuuren HJ, Viljoen-Bloom M (2003) Malo-ethanolic fermentation in saccharomyces and schizosaccharomyces. Curr Genet 43(6):379–391. doi:10.1007/s00294-003-0411-6

    Article  CAS  PubMed  Google Scholar 

  11. Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42(4):426–437. doi:10.1016/j.molcel.2011.05.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shi L, Tu BP (2013) Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110(18):7318–7323. doi:10.1073/pnas.1302490110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Oka S, Hsu CP, Sadoshima J (2012) Regulation of cell survival and death by pyridine nucleotides. Circ Res 111(5):611–627. doi:10.1161/CIRCRESAHA.111.247932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol 19(1):17–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 6009:1340–1343

    Article  Google Scholar 

  16. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vegran F, Boidot R, Sonveaux P, Feron O (2011) Lactate influx and efflux through monocarboxylate transporters bridge cancer cell metabolism and angiogenesis. Eur J Cancer 47:S98

    Article  Google Scholar 

  18. Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, Hunt TK (2006) Lactate stimulates endothelial cell migration. Wound Repair And Regeneration: Official Publication of the Wound Healing Society [And] The European Tissue Repair Society 14 (3):321-324

  19. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappa B/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560

    Article  CAS  PubMed  Google Scholar 

  20. Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Models Mech 4(6):727–732

    Article  CAS  Google Scholar 

  21. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925

    Article  CAS  PubMed  Google Scholar 

  22. McCully ML, Chau TA, Luke P, Blake PG, Madrenas J (2005) Characterization of human peritoneal dendritic cell precursors and their involvement in peritonitis. Clin Exp Immunol 139(3):513–525. doi:10.1111/j.1365-2249.2005.02713.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021. doi:10.1182/blood-2005-05-1795

    Article  CAS  PubMed  Google Scholar 

  24. Puig-Kroger A, Muniz-Pello O, Selgas R, Criado G, Bajo MA, Sanchez-Tomero JA, Alvarez V, del Peso G, Sanchez-Mateos P, Holmes C, Faict D, Lopez-Cabrera M, Madrenas J, Corbi AL (2003) Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of lactate and glucose-degradation products. J Leukoc Biol 73(4):482–492

    Article  CAS  PubMed  Google Scholar 

  25. Husain Z, Huang Y, Seth P, Sukhatme VP (2013) Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191(3):1486–1495. doi:10.4049/jimmunol.1202702

    Article  CAS  PubMed  Google Scholar 

  26. Lv LH, Yu JD, Li GL, Long TZ, Zhang W, Chen YJ, Min J, Wan YL (2012) Functional distinction of rat liver natural killer cells from spleen natural killer cells under normal and acidic conditions in vitro. Hepatobiliary Pancreat Dis Int 11(3):285–293

    Article  CAS  PubMed  Google Scholar 

  27. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274

    Article  PubMed  Google Scholar 

  29. Funasaka T, Haga A, Raz A, Nagase H (2002) Autocrine motility factor secreted by tumor cells upregulates vascular endothelial growth factor receptor (FLT-1) expression in endothelial cells. Int J Cancer 101(3):217–223

    Article  CAS  PubMed  Google Scholar 

  30. Niizeki H, Kobayashi M, Horiuchi I, Akakura N, Chen J, Wang J, Hamada J, Seth P, Katoh H, Watanabe H, Raz A, Hosokawa M (2002) Hypoxia enhances the expression the motility of human pancreatic of autocrine motility factor and cancer cells. Br J Cancer 86:1914–1919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Stern R (2008) Hyaluronidases in cancer biology. Semin Cancer Biol 18(4):275–280

    Article  CAS  PubMed  Google Scholar 

  32. Nikitovic D, Kouvidi K, Karamanos NK, Tzanakakis GN (2013) The roles of hyaluronan/RHAMM/CD44 and their respective interactions along the insidious pathways of fibrosarcoma progression. BioMed Res Int 2013:929531. doi:10.1155/2013/929531

    Article  PubMed Central  PubMed  Google Scholar 

  33. Stern R, Shuster S, Neudecker BA, Fromby B (2002) Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 276:24–31

    Article  CAS  PubMed  Google Scholar 

  34. West DC, Hampson IN, Arnold F, Kumar S (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 4705:1324. doi:10.2307/1694591

    Article  Google Scholar 

  35. Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M (2003) Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem 278(34):32259–32265

    Article  CAS  PubMed  Google Scholar 

  36. Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11:177–202. doi:10.1146/annurev-bioeng-061008-124949

    Article  CAS  PubMed  Google Scholar 

  37. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, Pestell RG, Sotgia F, Lisanti MP (2011) Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle 10(8):1271–1286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TCK is supported by an Australian Research Council Future Fellowship and the Epigenomic Medicine Laboratory is supported by McCord Research. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luc, R., Tortorella, S.M., Ververis, K. et al. Lactate as an insidious metabolite due to the Warburg effect. Mol Biol Rep 42, 835–840 (2015). https://doi.org/10.1007/s11033-015-3859-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3859-9

Keywords

Navigation