Skip to main content
Log in

Genetic diversity and structure revealed by genomic microsatellite markers in Centella asiatica (L.) Urb., a plant with medicinal potential

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Around the world, medicinal plants are utilised for various purposes. Centella asiatica is one of the important medicinal plants widely used in many medicinal systems. Nevertheless, analysis of the genetic diversity would pave the way for its most suitable utilisation.

Methods and results

The present study analyses the genetic diversity and structure of eighty C. asiatica accessions collected from the southern states of India, using ten genomic microsatellite markers. The mean Nei’s gene diversity (0.46) indicates considerable genetic diversity. Analysis of molecular variance (82.48%) exhibited significant genetic variance between samples within the population. The cluster analysis brought out the structure of the analysed populations as three subpopulations based on the genetic differentiation.

Conclusions

The study showed significant intra-population variation, predominant inbreeding and population differentiation in C. asiatica. The findings will help better understanding of the genetic structure and gene pool of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Padmalatha K, Prasad MNV (2008) Genetic diversity in Centella asiatica (L.) Urb., a memory-enhancing neutraceutical herb, using RAPD markers. Med Aromat Plant Sci Biotechnol 2:90–95

    Google Scholar 

  2. Rakotondralambo SOR, Rodier-Goud M, Rivallan R et al (2013) Insight into the biology, genetics and evolution of the Centella asiatica polyploid complex in Madagascar. Ind Crops Prod 47:118–125. https://doi.org/10.1016/j.indcrop.2013.02.022

    Article  Google Scholar 

  3. Javaid A, Gurmet R, Sharma N (2018) Centella asiatica (L.) urban: a predominantly self-pollinated herbal perennial plant of family Apiaceae. Vegetos An Int J Plant Res 31:53–59

    Article  Google Scholar 

  4. Roy DC, Barman SK, Shaik MM (2013) Current updates on Centella asiatica: phytochemistry, pharmacology and traditional uses. Med Plant Res 3:20–36. https://doi.org/10.5376/mpr.2013.03.0004

    Article  Google Scholar 

  5. Das A, Mallick R (1991) Correlation between genomic diversity and asiaticoside content in. Bot Bull Acad Sin 32:1–8

    CAS  Google Scholar 

  6. Kokubugata G, Kondo K, Randall LM (1998) Intraspecific polyploidy in Centella asiatica and their karyotypes in five populations in Australia and Japan. Chromosom Sci 2:43–46

    Google Scholar 

  7. Pootakham W, Naktang C, Kongkachana W et al (2021) De novo chromosome-level assembly of Centella asiatica genome. Genomics 113:2221–2228. https://doi.org/10.1016/j.ygeno.2021.05.019

    Article  CAS  PubMed  Google Scholar 

  8. Rohini MR, Sane A, Ravish Chaudhary HK (2019) Molecular characterization and DNA fingerprinting of Centella asiatica using SSR markers. Int J Chem Stud 7:705–710

    CAS  Google Scholar 

  9. Rakotondralambo SOR, Lussert A, Rivallan R et al (2012) Microsatellite markers isolated from the wild medicinal plant Centella asiatica (Apiaceae) from an enriched genomic library. Am J Bot 99:26–29. https://doi.org/10.3732/ajb.1100441

    Article  Google Scholar 

  10. Sakthipriya M, Vishnu SS, Sujith S et al (2018) Analysis of genetic diversity of Centella asiatica using SSR markers. Int J Appl Sci Biotechnol 6:103–109. https://doi.org/10.3126/ijasbt.v6i2.19583

    Article  CAS  Google Scholar 

  11. Chen X, Chen Q, Han J (2012) Molecular identification of Centella asiatica and its adulterants using ITS2 DNA barcode. Mod Chinese Med 3

  12. Zhang XG, Han T, He ZG et al (2012) Genetic diversity of Centella asiatica in China analyzed by inter-simple sequence repeat (ISSR) markers: combination analysis with chemical diversity. J Nat Med 66:241–247. https://doi.org/10.1007/s11418-011-0572-4

    Article  PubMed  Google Scholar 

  13. Sahu J, Das Talukdar A, Devi K et al (2015) E-Microsatellite markers for Centella asiatica (Gotu Kola) genome: validation and cross-transferability in Apiaceae family for plant omics research and development. Omi J Integr Biol 19:52–65. https://doi.org/10.1089/omi.2014.0113

    Article  CAS  Google Scholar 

  14. Thomas MT (2010) Biosystematic studies on the taxa of Hydrocotyle L, and Centella L. occurring in Peninsular India with special reference to intraspecific variants of Centella asiatica (L.) Urb. Dissertation, University of Kerala (JNTBGRI)

  15. Alqahtani A, Cho J-L, Wong KH et al (2017) Differentiation of three Centella species in Australia as inferred from morphological characteristics, ISSR molecular fingerprinting and phytochemical composition. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01980

    Article  PubMed  PubMed Central  Google Scholar 

  16. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Devkota A, Jha PK (2010) Seed germination responses of the medicinal herb Centella asiatica. Braz J Plant Physiol 22:143–150

    Article  Google Scholar 

  18. Singh P, Singh JS (2002) Recruitment and competitive interaction between ramets and seedlings in a perennial medicinal herb, Centella asiatica. Basic Appl Ecol 3:65–76

    Article  Google Scholar 

  19. Krishnamurthy R, Chandorkar MS, Kalzunkar EG et al (2006) Studies on agronomic practices for growing Centella asiatica (L.) Urban in high rainfall localities under open and partial shade of mango orchards. Indian J Hortic 63:76–80

    Google Scholar 

  20. Bangaru Naidu T, Nageswara Rao S, Sarada Mani N, Jagan Mohan YSYV, Pola S (2010) Conservation of an endangered medicinal plant Centella asiatica through plant tissue culture. Drug Invent today 2:17–21

    CAS  Google Scholar 

  21. Paul Stackhouse J, Jason B, Bradley M, et al (2020) power data access viewer (NASA). https://power.larc.nasa.gov/data-access-viewer/. Accessed 9 Oct 2020

  22. Team RC (2013) R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria

  23. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281

    Article  PubMed  PubMed Central  Google Scholar 

  24. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  Google Scholar 

  25. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106

    Article  CAS  Google Scholar 

  26. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  Google Scholar 

  27. Sefc K, Wagner H (1999) Identity 1.0. http://www.uni-graz.at/~sefck/identity4.exe. Accessed 1 April 2021

  28. Sarkar D (2008) Lattice: multivariate data visualization with R. Springer Science and Business Media, Available from http://lmdvr.r-forge.r-project.org

  29. Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    Article  CAS  Google Scholar 

  30. Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338

    Article  Google Scholar 

  31. Hennink S, Zeven AC (1990) The interpretation of Nei and Shannon-Weaver within population variation indices. Euphytica 51:235–240. https://doi.org/10.1007/BF00039724

    Article  Google Scholar 

  32. Hayesmoore JB (2020) Gene calculators. https://www.genecalculators.net/pq-chwe-polypicker.html. Accessed 19 Dec 2020

  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  Google Scholar 

  34. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  Google Scholar 

  35. Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32

    Article  CAS  Google Scholar 

  36. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  37. Li Y, Liu J (2018) StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    Article  Google Scholar 

  38. Bakoumé C, Wickneswari R, Rajanaidu N et al (2007) Allelic diversity of natural oil palm (Elaeis guineensis Jacq.) populations detected by microsatellite markers: implications for conservation. Plant Genet Resour 5:104–107. https://doi.org/10.1017/S1479262107710870

    Article  CAS  Google Scholar 

  39. Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527–1533

    Article  Google Scholar 

  40. Nag A, Ahuja PS, Sharma RK (2015) Genetic diversity of high-elevation populations of an endangered medicinal plant. AoB Plants 7:1–15. https://doi.org/10.1093/aobpla/plu076

    Article  Google Scholar 

  41. Chaitra KC, Sarvamangala C, Manikanta DS et al (2020) Insights into genetic diversity and population structure of Indian carrot (Daucus carota L.) accessions. J Appl Genet 61:1–10. https://doi.org/10.1007/s13353-020-00556-6

    Article  CAS  Google Scholar 

  42. Lee S-R, Choi J-E, Lee B-Y et al (2018) Genetic diversity and structure of an endangered medicinal herb: implications for conservation. AoB Plants 10:1–10. https://doi.org/10.1093/aobpla/ply021

    Article  CAS  Google Scholar 

  43. Lee KJ, Lee J-R, Sebastin R et al (2020) Molecular genetic diversity and population structure of ginseng germplasm in RDA-Genebank: implications for breeding and conservation. Agronomy 10:68. https://doi.org/10.3390/agronomy10010068

    Article  CAS  Google Scholar 

  44. Ku Y, Oh H, Kong H et al (2004) Genetic diversity and differentiation in remnant populations of Bupleurum latissimum Nakai, an endangered endemic plant species to Ulleung Island, Korea. Korean J Biol Sci 8:289–294. https://doi.org/10.1080/12265071.2004.9647762

    Article  Google Scholar 

  45. Rameshkumar R, Pandian S, Rathinapriya P et al (2019) Genetic diversity and phylogenetic relationship of Nilgirianthus ciliatus populations using ISSR and RAPD markers: implications for conservation of an endemic and vulnerable medicinal plant. Biocatal Agric Biotechnol 18:101072. https://doi.org/10.1016/j.bcab.2019.101072

    Article  Google Scholar 

  46. McDonnell AJ, Moore CL, Schuette S, Martine CT (2021) Population genomics and conservation of Erigenia bulbosa (Apiaceae), an Edge-of-Range Species in Pennsylvania. Int J Plant Sci. https://doi.org/10.1086/713917

    Article  Google Scholar 

  47. Gomez-Raya L, Rodríguez C, Barragán C, Silió L (2015) Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genet Sel Evol 47:81. https://doi.org/10.1186/s12711-015-0153-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajasekharan PE, Kareem VK, Ravish BS, Mini S (2017) Genetic diversity in Oroxylum indicum (L.) Vent., a threatened medicinal plants from India by ISSR analysis. Indian J Biotechnol 16:357–365

    Google Scholar 

  49. Luo Z, Brock J, Dyer JM et al (2019) Genetic diversity and population structure of a Camelina sativa spring panel. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.00184

    Article  Google Scholar 

  50. Jain SK, Qualset CO, Bhatt GM, Wu KK (1975) Geographical patterns of phenotypic diversity in a world collection of durum wheats 1. Crop Sci 15:700–704. https://doi.org/10.2135/cropsci1975.0011183X001500050026x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr S. Shafeek (JNTBGRI) for providing assistance with germplasm collection and field establishment. Sakthipriya Mathavaraj (MS) thanks Mr Franc-Christophe Baurens (franc-christophe.baurens@cirad.fr), Mr Mzarem (mzarem@um.ac.ir), Dr Allah Ditta (adbotanist@yahoo.com), Dr Siju Senan (JNTBGRI), Dr Senthilkumar (IFGTB), and Mr Claudio Brondani (claudio.brondani@embrapa.br) for providing suggestions and help during data analysis. The authors extend many thanks to the anonymous reviewers for providing extremely useful comments and suggestions for improving the manuscript.

Funding

The authors thank the Director of JNTBGRI for providing the necessary facilities. MS acknowledges the receipt of PhD fellowship (IF150469) through the INSPIRE scheme of the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalluvettankuzhy Krishnannair Sabu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 604 kb)

Supplementary file2 (PDF 1956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathavaraj, S., Sabu, K.K. Genetic diversity and structure revealed by genomic microsatellite markers in Centella asiatica (L.) Urb., a plant with medicinal potential. Mol Biol Rep 48, 7387–7396 (2021). https://doi.org/10.1007/s11033-021-06748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06748-5

Keywords

Navigation