Skip to main content
Log in

Romidepsin and tamoxifen cooperatively induce senescence of pancreatic cancer cells through downregulation of FOXM1 expression and induction of reactive oxygen species/lipid peroxidation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Although improvement has been made in therapeutic strategies against pancreatic carcinoma, overall survival has not significantly enhanced over the past decade. Thus, the establishment of better therapeutic regimens remains a high priority.

Methods

Pancreatic cancer cell lines were incubated with romidepsin, an inhibitor of histone deacetylase, and tamoxifen, and their effects on cell growth, signaling and gene expression were analyzed. Xenografts of human pancreatic cancer CFPAC1 cells were medicated with romidepsin and tamoxifen to evaluate their effects on tumor growth.

Results

The inhibition of the growth of pancreatic cancer cells induced by romidepsin and tamoxifen was effectively reduced by N-acetyl cysteine and α-tocopherol, respectively. The combined treatment greatly induced reactive oxygen species production and mitochondrial lipid peroxidation, and these effects were prevented by N-acetyl cysteine and α-tocopherol. Tamoxifen enhanced romidepsin-induced cell senescence. FOXM1 expression was markedly downregulated in pancreatic cancer cells treated with romidepsin, and tamoxifen further reduced FOXM1 expression in cells treated with romidepsin. Siomycin A, an inhibitor of FOXM1, induced senescence in pancreatic cancer cells. Similar results were obtained in knockdown of FOXM1 expression by siRNA.

Conclusion

Since FOXM1 is used as a prognostic marker and therapeutic target for pancreatic cancer, a combination of the clinically available drugs romidepsin and tamoxifen might be considered for the treatment of patients with pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

References

  1. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–1617

    Article  CAS  PubMed  Google Scholar 

  2. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C et al (2011) FOLIFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825

    Article  CAS  PubMed  Google Scholar 

  3. Mohammed S, Van Buren 2nd G, Fisher WE (2014) Pancreatic cancer: advances in treatment. World J Gastroenterol 20(28):9354–9360

    PubMed  PubMed Central  Google Scholar 

  4. Kroep JR, Pinedo HM, van Groeningen CJ, Peters GJ (1999) Experimental drugs and drug combinations in pancreatic cancer. Ann Oncol 10(Suppl 4):234–238

    Article  PubMed  Google Scholar 

  5. Jakstaite A, Maiukiene A, Silkuniene G, Kmieliute K, Gulbinas A, Damgrauskas Z (2015) HuR mediated post-transcriptional regulation as a new potential adjuvant therapeutic target in chemotherapy for pancreatic cancer. World J Gastroenterol 21(46):13004–13019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhong S, Qie S, Yang L, Yan Q, Ge L, Wang S (2017) S-1 monotherapy versus S-1 combination therapy in gemcitabine-refractory advanced pancreatic cancer. A meta-analysis (PRISMA) of randomized control trial. Medicine (Baltimore) 96(30):e7611

    Article  CAS  Google Scholar 

  7. Wanitpongpun C, Honma Y, Okada T, Suzuki R, Takeshi U, Suzumiya J (2021) Tamoxifen enhances romidepsin-induced apoptosis in T-cell malignant cells via activation of FOXO1 signaling pathway. Leuk Lymph 62(7):1585–1596

    Article  CAS  Google Scholar 

  8. Petrich A, Nabhan C (2016) Use of class I histone deacetylase inhibitor romidepsin in combination regimens. Leuk Lymph 57(8):1755–1765

    Article  CAS  Google Scholar 

  9. Suraweera A, O’Byme KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the therapeutic potential of HDACi. Front Oncol 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mandlekar S, Kong ANT (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6(6):469–477

    Article  CAS  PubMed  Google Scholar 

  11. Avgeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant glioma. Oncologist 4(3):209–224

    Article  CAS  PubMed  Google Scholar 

  12. Kasukabe T, Okabe-Kado J, Kato N, Sassa T, Honma Y (2005) Effects of combined treatment with rapamycin and cotylenin A, a novel differentiation-inducing agent, on human breast carcinoma MCF-7 cells and xenografts. Breast Cancer Res 7(6):R1097-1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura S, Nakanishi A, Takazawa M, Okihiro S, Urano S, Fukui K (2016) Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. Free Radic Res 50(11):1214–1225

    Article  CAS  PubMed  Google Scholar 

  14. Mizutani H, Hiraku Y, Tada-Oikawa S, Murata M, Ikemura K, Iwamoto T, Kagawa Y, Okuda M, Kawanishi S (2010) Romidepsin (FK228), a potent histone deacetylase inhibitor, induces apoptosis through the generation of hydrogen peroxide. Cancer Sci 101(10):2214–2219

    Article  CAS  PubMed  Google Scholar 

  15. Miyake T, Honma Y, Urano T, Kato N, Suzumiya J (2015) Combined treatment with tamoxifen and a fusicoccin derivative (ISIR-042) to overcome resistance to therapy and to enhance the antitumor activity of 5-fluorouracil and gemcitabine in pancreatic cancer cells. Int J Oncol 47(1):315–324

    Article  CAS  PubMed  Google Scholar 

  16. Sandor V, Bakke S, Robey RW, Kan H, Blagosklonny MV, Bender J, Brooks R, Piekarz RL, Tucker E, Figg WD et al (2002) Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176) in patients with refractory neoplasms. Clin Cancer Res 8(3):718–728

    CAS  PubMed  Google Scholar 

  17. Halasi M, Gartel AL (2021) FOX(M1) news-it is cancer. Mol Cancer Ther 12(3):245–254

    Article  Google Scholar 

  18. Bella L, Zona S, Nestal de Moraes G, Lam EW (2014) FOXM1: a key oncofoetal transcription factor in health and disease. Semin Cancer Biol 29:32–39

    Article  CAS  PubMed  Google Scholar 

  19. Song X, Kenston SSF, Zhao J, Yang D, Gu Y (2017) Roles of FoxM1 in cell regulation and breast cancer targeting therapy. Med Oncol 34:41

    Article  PubMed  Google Scholar 

  20. Yao S, Fan LY, Lam EW (2018) The FOXO3-FOXO1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 50:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osei-Sarfo K, Gudas LJ (2019) Retinoids induce antagonism between FOXO3A and FOXM1 transcription factors in human oral squamous cell carcinoma (OSCC) cells. PLoS ONE 14(4):e0215234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lecot P, Alimirah F, Desprez PY, Campisi J, Wiley C (2016) Context-dependent effects of cellular senescence in cancer development. Br J Cancer 114(11):1180–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7(2):165–176

    Article  CAS  PubMed  Google Scholar 

  24. Kim YH, Choi YW, Lee J, Soh EY, Kim JH, Park TJ (2017) Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun 8:15208

    Article  PubMed  PubMed Central  Google Scholar 

  25. Faget DV, Ren Q, Stewart SA (2019) Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19(8):439–453

    Article  CAS  PubMed  Google Scholar 

  26. Guccini I, Revandkar A, D’Ambrosio M, Colucci M, Pasquini E, Mosole S, Troiani M, Brina D, Sheibani-Tezerji R, Elia AR et al (2021) Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell 39(1):68–82

    Article  CAS  PubMed  Google Scholar 

  27. Radhakrishnan SK, Bhat UG, Hughes DE, Wang I-C, Costa RH, Gartel AL (2006) Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res 66(19):9731–9735

    Article  CAS  PubMed  Google Scholar 

  28. Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL, Lau LF, Costa RH, Raychaudhuri P (2009) FOXM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 28(19):2908–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH (2007) Down-regulation of forkhead box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67(17):8293–8300

    Article  CAS  PubMed  Google Scholar 

  30. Xia JT, Wang H, Lian LJ, Peng BG, Wu ZF, Chen LZ, Xue L, Li Z, Li W (2012) Overexpression of FOXM1 is associated with poor prognosis and clinicopathologic stage of pancreatic ductal adenocarcinoma. Pancreas 41(4):629–635

    Article  CAS  PubMed  Google Scholar 

  31. Quan M, Wang P, Cui J, Gao Y, Xie K (2013) The role of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 12:159

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang C, Du J, Xie K (2014) FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim Biophys Acta 1845(2):104–116

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM, Ridinger-Saison M, DelGiorno KE, DelGiorno KE, Antal CE et al (2019) Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569(7754):131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang MT, Fer N, Galeas J, Collisson EA, Kim SE, Sharib J, McCormick F (2019) Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nat Commun 10(1):3055

    Article  PubMed  PubMed Central  Google Scholar 

  35. Macedo JC, Vaz S, Bakker B, Ribeiro R, Bakker PL, Escandell JM, Ferreira MG, Medema R, Foijer F, Logarinho E (2018) FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat Commun 9(1):2834

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported in part by a grant from the Shimane University ‘SUIGAN’ project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript as follows: Conceptualization, NO, YH, TU and KT; methodology, NO, YH and TU; investigation, NO and YH; writing of original draft, NO and YH; writing, revision and editing, YH, TU and KT; funding and supervision, TU and KT. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yoshio Honma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal experiments were approved by the Ethics Committee of Shimane University (Approval No. IZ2-110) and were conducted in accordance with the Japanese laws associated with animal experiments, the institutional regulations of Shimane University and the Science Council of Japan guidelines for proper conduct of animal experiments.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuni, N., Honma, Y., Urano, T. et al. Romidepsin and tamoxifen cooperatively induce senescence of pancreatic cancer cells through downregulation of FOXM1 expression and induction of reactive oxygen species/lipid peroxidation. Mol Biol Rep 49, 3519–3529 (2022). https://doi.org/10.1007/s11033-022-07192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07192-9

Keywords

Navigation