Skip to main content
Log in

Chern Numbers, Localisation and the Bulk-edge Correspondence for Continuous Models of Topological Phases

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In order to study continuous models of disordered topological phases, we construct an unbounded Kasparov module and a semifinite spectral triple for the crossed product of a separable C-algebra by a twisted \({\mathbb {R}}^{d}\)-action. The spectral triple allows us to employ the non-unital local index formula to obtain the higher Chern numbers in the continuous setting with complex observable algebra. In the case of the crossed product of a compact disorder space, the pairing can be extended to a larger algebra closely related to dynamical localisation, as in the tight-binding approximation. The Kasparov module allows us to exploit the Wiener–Hopf extension and the Kasparov product to obtain a bulk-boundary correspondence for continuous models of disordered topological phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Elgart, A., Naboko, S., Schenker, J.H., Stolz, G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163, 343–413 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Andersson, A.: Index pairings for \({\mathbb {R}}^{n}\)-actions and Rieffel deformations. arXiv:1406.4078 (2014)

  3. Andersson, A.: The Noncommutative Gohberg–Krein Theorem. The University of Wollongong, PhD Thesis (2015)

    Google Scholar 

  4. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(suppl. 1), 13–38 (1964)

    MathSciNet  MATH  Google Scholar 

  5. Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37, 5–26 (1969)

    Article  MathSciNet  Google Scholar 

  6. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. V. Ann. Math. 93(2), 139–149 (1971)

    Article  MathSciNet  Google Scholar 

  7. Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les C -modules hilbertiens. C. R. Acad. Sci Paris Sér. I Math 296(21), 875–878 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Bellissard. J.: Gap labelling theorems for Schrödinger operators. In: Waldschmidt, M., Moussa, P., Luck, J., Itzykson, C. (eds.) From Number Theory to Physics, chapter 12, Springer (1992)

  9. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math Phys. 35(10), 5373–5451 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Belmonte, F., Lein, M., Măntoiu, M.: Magnetic twisted actions on general abelian C -algebras. J. Operator Theory 69(1), 33–58 (2013)

    Article  MathSciNet  Google Scholar 

  11. Benameur, M., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Booß-Bavnbek, B., Klimek, S., Lesch, M., Zhang, W. (eds.) Analysis, Geometry and Topology of Elliptic Operators, pp. 297–352. World Scientific Publishing (2006)

  12. Bikchentaev, A.M.: On a property of l p-spaces on semifinite von Neumann algebras. Mat. Zametki 64(2), 185–190 (1998)

    Article  MathSciNet  Google Scholar 

  13. Blackadar, B.: K-Theory for Operator Algebras, 2nd edn. vol 5 of MSRI Publications. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Blackadar, B.: Operator Algebras: Theory of C -algebras and von Neumann Algebras. vol. 122 of Encyclopedia of Mathematical Sciences. Springer, Berlin (2006)

  15. Boersema, J., Loring, T.A.: K-theory for real C -algebras via unitary elements with symmetries. New York J. Math. 22, 1139–1220 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Bourne, C.: Topological States of Matter and Noncommutative Geometry. Phd Thesis, Australian National University (2015)

  17. Bourne, C., Carey, A.L., Rennie, A.: The bulk-edge correspondence for the quantum Hall effect in Kasparov theory. Lett. Math. Phys. 105(9), 1253–1273 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bourne, C., Carey, A.L., Rennie, A.: A non-commutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)

    Article  MathSciNet  Google Scholar 

  19. Bourne, C., Kellendonk, J., Rennie, A.: The K-theoretic bulk-edge correspondence for topological insulators. Ann. Henri Poincaré 18(5), 1833–1866 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Brain, S., Mesland, B., van Suijlekom, W.D.: Gauge theory for spectral triples and the unbounded Kasparov product. J. Noncommut. Geom. 10(1), 135–206 (2016)

    Article  MathSciNet  Google Scholar 

  21. Carey, A.L., Gayral, V., Phillips, J., Rennie, A., Sukochev, F.A.: Spectral flow for nonunital spectral triples. Canad. J. Math. 67(4), 759–794 (2015)

    Article  MathSciNet  Google Scholar 

  22. Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Integration on locally compact noncommutative spaces. J. Funct. Anal. 263(2), 383–414 (2012)

    Article  MathSciNet  Google Scholar 

  23. Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index theory for locally compact noncommutative geometries. Mem. Amer. Math. Soc. 231(2), vi+ 130 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Carey, A.L., Phillips, J.: Unbounded Fredholm modules and spectral flow. Canad. J. Math. 50(4), 673–718 (1998)

    Article  MathSciNet  Google Scholar 

  25. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The Hochschild class of the Chern character of semifinite spectral triples. J. Funct. Anal. 213, 111–153 (2004)

    Article  MathSciNet  Google Scholar 

  26. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras i: spectral flow. Adv. Math. 202(2), 451–516 (2006)

    Article  MathSciNet  Google Scholar 

  27. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras ii: the even case. Adv. Math. 202(2), 517–554 (2006)

    Article  MathSciNet  Google Scholar 

  28. Connes, A.: Sur la théorie non commutative de l’intégration. In: Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), vol. 725 of Lecture Notes in Math, pp. 19–143. Springer, Berlin (1979)

  29. Connes, A.: Non-commutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 41–144 (1985)

    Article  Google Scholar 

  30. Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5, 174–243 (1995)

    Article  MathSciNet  Google Scholar 

  31. De Nittis, G., Lein, M.: Linear Response Theory: An Analytic-Algebraic Approach. vol. 21 of SpringerBriefs in Mathematical Physics. Springer, Cham (2017)

    Book  Google Scholar 

  32. van den Dungen, K., Paschke, M., Rennie, A.: Pseudo-riemannian spectral triples and the harmonic oscillator. J. Geom. Phys. 73, 37–55 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Elgart, A., Graf, G.M., Schenker, J.H.: Equality of the bulk and edge Hall conductances in a mobility gap. Comm. Math Phys. 259(1), 185–221 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. Fack, T., Kosaki, H.: Generalised S-numbers of τ-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    Article  Google Scholar 

  35. Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Germinet, F., Klein, A.: A comprehensive proof of localization for continuous Anderson models with singular random potentials. J. Eur. Math Soc. (JEMS) 15(1), 53–143 (2013)

    Article  MathSciNet  Google Scholar 

  37. Germinet, F., Taarabt, A.: Spectral properties of dynamical localization for Schrödinger operators. Rev. Math. Phys. 25, 1350016 (2013)

    Article  MathSciNet  Google Scholar 

  38. Graf, G.M., Shapiro, J.: The bulk-edge correspondence for disordered chiral chains. arXiv:1801.09487 (2018)

  39. Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun Math. Phys. 343(2), 477–513 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hannabuss, K., Mathai, V., Thiang, G.C.: T-duality simplifies bulk–boundary correspondence: the noncommutative case. Lett. Math. Phys. 108(5), 1163–1201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  41. Higson, N., Roe, J.: Analytic K-Homology. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  42. Kaad, J., Lesch, M.: A local-global principle for regular operators on Hilbert modules. J. Funct. Anal. 262(10), 4540–4569 (2012)

    Article  MathSciNet  Google Scholar 

  43. Kaad, J., Lesch, M.: Spectral flow and the unbounded Kasparov product. Adv. Math. 298, 495–530 (2013)

    Article  MathSciNet  Google Scholar 

  44. Kaad, J., Nest, R., Rennie, A.: K K-theory and spectral flow in von Neumann algebras. J. K-Theory 10, 241–277 (2012)

    Article  MathSciNet  Google Scholar 

  45. Kasparov, G.G.: The operator K-functor and extensions of C -algebras. Math USSR Izv. 16, 513–572 (1981)

    Article  Google Scholar 

  46. Kasparov, G.G.: Equivariant K K-Theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  47. Katsura, H., Koma, T.: The \(\mathbb {Z}_{2}\) index of disordered topological insulators with time reversal symmetry. J. Math. Phys. 57, 021903 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. Kellendonk, J.: On the C -algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  49. Kellendonk, J.: Cyclic cohomology for graded C ∗,r-algebras and its pairings with van Daele K-theory. arXiv:1607.08465(2016)

  50. Kellendonk, J., Richard, S.: Topological boundary maps in physics. In: Boca, F., Purice, R., Strătilă, Ş (eds.) Perspectives in Operator Algebras and Mathematical Physics. Theta Ser. Adv. Math., vol. 8, Theta, Bucharest, pp. 105–121. arXiv:math-ph/0605048 (2008)

  51. Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(01), 87–119 (2002)

    Article  MathSciNet  Google Scholar 

  52. Kellendonk, J., Schulz-Baldes, H.: Quantization of edge currents for continuous magnetic operators. J. Funct. Anal. 209(2), 388–413 (2004)

    Article  MathSciNet  Google Scholar 

  53. Kellendonk, J., Schulz-Baldes, H.: Boundary maps for C -crossed products with with an application to the quantum Hall effect. Commun. Math. Phys. 249(3), 611–637 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  54. Kitaev, A.: Periodic table for topological insulators and superconductors. In: Lebedev, V., Feigelman, M. (eds.) American Institute of Physics Conference Series, vol. 1134 of American Institute of Physics Conference Series, pp. 22–30 (2009)

  55. Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  56. Kucerovsky, D.: The KK-product of unbounded modules. K-Theory 11, 17–34 (1997)

    Article  MathSciNet  Google Scholar 

  57. Laca, M., Neshveyev, S.: KMS states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211(2), 457–482 (2004)

    Article  MathSciNet  Google Scholar 

  58. Lein, M., Măntoiu, M., Richard, S.: Magnetic pseudodifferential operators with coefficients in C -algebras. Publ RIMS Kyoto Univ. 46, 755–788 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Lenz, D.H.: Random operators and crossed products. Math. Phys. Anal. Geom. 2(2), 197–220 (1999)

    Article  MathSciNet  Google Scholar 

  60. Lesch, M.: On the index of the infinitesimal generator of a flow. J. Operator Theory 26, 73–92 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Lord, S., Rennie, A., Várilly, J.: Riemannian manifolds in noncommutative geometry. J. Geom. Phys. 62, 1611–1638 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  62. Măntoiu, M., Purice, R., Richard, S.: Spectral and propagation results for magnetic Schrödinger operators; A C -algebraic framework. J. Funct. Anal. 250(1), 42–67 (2007)

    Article  MathSciNet  Google Scholar 

  63. Mesland, B.: Unbounded bivariant K-Theory and correspondences in noncommutative geometry. J. Reine Angew. Math. 691, 101–172 (2014)

    MathSciNet  MATH  Google Scholar 

  64. Mesland, B., Rennie, A.: Nonunital spectral triples and metric completeness in unbounded K K-theory. J. Funct. Anal. 271(9), 2460–2538 (2016)

    Article  MathSciNet  Google Scholar 

  65. Nakamura, S., Bellissard, J.: Low energy bands do not contribute to quantum Hall effect. Comm. Math. Phys. 131, 283–305 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  66. Nguyen, X., Zessin, H.: Ergodic theorems for spatial processes. FZ. Wahrsch. Verw Gebiete 48(2), 133–158 (1979)

    Article  MathSciNet  Google Scholar 

  67. Packer, J.A., Raeburn, I.: Twisted crossed products of C -algebras. Math. Proc. Camb. Philos. Soc. 106, 293–311 (1989)

    Article  MathSciNet  Google Scholar 

  68. Pask, D., Rennie, A.: The noncommutative geometry of graph C -algebras I: The index theorem. J. Funct. Anal. 233(1), 92–134 (2006)

    Article  MathSciNet  Google Scholar 

  69. Phillips, J., Raeburn, I.: An index theorem for Toeplitz operators with noncommutative symbol space. J. Funct. Anal. 120, 239–263 (1993)

    Article  MathSciNet  Google Scholar 

  70. Pierrot, F.: Opérateurs réguliers dans les C -modules et struture des C -algébres des groupes de Lie semisimple complexes simplement connexes. J. Lie Theory 16, 651–689 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Prodan, E.: A computational non-commutative geometry program for disordered topological insulators. Springer, Berlin (2017)

    Book  Google Scholar 

  72. Prodan, E., Leung, B., Bellissard, J.: The non-commutative n th-Chern number \((n \geqslant 1)\). J. Phys. A 46, 5202 (2013)

    Article  Google Scholar 

  73. Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Anal. 271(5), 1150–1176 (2016)

    Article  MathSciNet  Google Scholar 

  74. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Springer, Berlin (2016)

    Book  Google Scholar 

  75. Prodan, E., Schulz-Baldes, H.: Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)

    Article  MathSciNet  Google Scholar 

  76. Reed, M., Simon, B.: Methods of Mathematical Physics I: Functional Analysis. Academic Press, London (1972)

    MATH  Google Scholar 

  77. Reed, M., Simon, B.: Methods of Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  78. Rennie, A.: Smoothness and locality for nonunital spectral triples. K-Theory 28, 127–165 (2003)

    Article  MathSciNet  Google Scholar 

  79. Rennie, A.: Summability for nonunital spectral triples. K-Theory 31, 77–100 (2004)

    Article  MathSciNet  Google Scholar 

  80. Rieffel, M.: Connes’ analogue for crossed products of the Thom isomorphism. Contemp. Math. 10, 143–154 (1982)

    Article  MathSciNet  Google Scholar 

  81. Savinien, J., Bellissard, J.: A spectral sequence for the K-theory of tiling spaces. Ergodic Theory Dyn. Syst. 29(3), 997–1031 (2009)

    Article  MathSciNet  Google Scholar 

  82. Schröder, H.: K-theory for Real C -Algebras and Applications. Longman Scientific & Technical, Harlow: Copublished in the United States with John Wiley & Sons, Inc., New York (1993)

    MATH  Google Scholar 

  83. Schulz-Baldes, H.: \(\mathbb {Z}_{2}\) indices of odd symmetric Fredholm operators. Documenta Math. 20, 1481–1500 (2015)

    MathSciNet  MATH  Google Scholar 

  84. Simon, B.: Quantum dynamics: from automorphism to Hamiltonian. In: Lieb, E.H., Simon, B., Wightman, A.S. (eds.) Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, pp. 327–350. Princeton University Press (1976)

  85. Simon, B.: Trace Ideals and Their Applications, vol. 120 of Mathematical Surveys and Monographs, 2nd edn. American Mathematical Society, Rhode Island (2005)

    Google Scholar 

  86. Taarabt, A.: Equality of Bulk and Edge Hall Conductances for Continuous Magnetic Random Schrödinger Operators. arXiv:1403.7767 (2014)

  87. Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  88. Xia, J.: Geometric invariants of the quantum Hall effect. Commun. Math. Phys. 119, 29–50 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  89. Zak, J.: Magnetic translation group. Phys. Rev. 134, A1602–A1606 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CB thanks Hermann Schulz-Baldes and Giuseppe De Nittis for posing the question of continuous Chern numbers to him, which eventually turned into the present manuscript, and for helpful discussions on the topic. The authors also thank Andreas Andersson, Alan Carey, Johannes Kellendonk and Emil Prodan for useful discussions. We would also like to thank an anonymous referee who pointed out an important error in an earlier version of this work. CB is supported by a postdoctoral fellowship for overseas researchers from The Japan Society for the Promotion of Science (No. P16728) and a KAKENHI Grant-in-Aid for JSPS fellows (No. 16F16728). CB also acknowledges support from the Australian Mathematical Society and the Australian Research Council during the production of this work. This work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. Lastly, both authors thank the mathematical research institute MATRIX in Australia where part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bourne.

Appendix: Summary of Non-unital Index Theory

Appendix: Summary of Non-unital Index Theory

In what follows we will assume that the algebras we deal with are separable. A useful exposition of KK-theory and its applications can be found in [13, 75] and [20] for the unbounded setting.

Given a real or complex C-module EB over a \({\mathbb {Z}}_{2}\)-graded C-algebra B, we denote by EndB(E) the algebra of adjointable endomorphisms of E subject to the B-valued inner-product (⋅∣⋅)B. The algebra of finite rank endomorphisms \({\text {End}}_{B}^{00}(E)\) is the algebraic span of the operators \({\Theta }_{e_{1},e_{2}}\) for e1,e2E such that

$${\Theta}_{e_{1},e_{2}}(e_{3}) = e_{1}\cdot (e_{2}\mid e_{3})_{B} $$

with eb the (possibly graded) right-action of B on EB. The algebra of compact endomorphisms \({{\text {End}}_{B}^{0}}(E)\) is the C-closure of \({\text {End}}^{00}_{B}(E)\).

Definition A.1

Let A and B be real \({\mathbb {Z}}_{2}\)-graded C-algebras. A real unbounded Kasparov module \((\mathcal {A},{~}_{\pi }{E}_{B}, D)\) is a \({\mathbb {Z}}_{2}\)-graded real C-module EB, a graded representation of A on EB, π : A →EndB(E), and an unbounded self-adjoint, regular and odd operator D such that for all \(a\in \mathcal {A}\subset A\), a dense ∗-subalgebra,

$$\begin{array}{@{}rcl@{}} [D,\pi(a)]_{\pm} \in {\text{End}}_{B}({E}), \qquad \pi(a)(1+D^{2})^{-1/2}\in {{\text{End}}_{B}^{0}}({E}). \end{array} $$

For a complex Kasparov module, one simply replaces all spaces and algebras with complex ones. Where unambiguous, we will omit the representation π and write unbounded Kasparov modules as \((\mathcal {A}, {E}_{B}, D)\). The results of Baaj and Julg [7] continue to hold for real Kasparov modules, so given an unbounded module \((\mathcal {A},{E}_{B},D)\) we apply the bounded transformation to obtain the real Kasparov module (A,EB,D(1 + D2)− 1/2).

1.1 A.1 Semifinite Theory

An unbounded A-\({\mathbb {C}}\) or A-\({\mathbb {R}}\) Kasparov module is precisely a complex or real spectral triple as defined by Connes. Complex spectral triples satisfying additional regularity properties have the advantage that the local index formula by Connes and Moscovici [30] gives computable expressions for the index pairing with K-theory, a special case of the Kasparov product

$$K_{j}(A) \times KK^{j}(A,{\mathbb{C}}) \to K_{0}({\mathbb{C}})\cong {\mathbb{Z}}. $$

We can extend this general framework by working with semifinite spectral triples.

Let τ be a fixed faithful, normal, semifinite trace on a von Neumann algebra \(\mathcal {N}\). We let \(\mathcal {K}_{\mathcal {N}}\) be the τ-compact operators in \(\mathcal {N}\) (that is, the norm closed ideal generated by the projections \(P\in \mathcal {N}\) with \(\tau (P)<\infty \)).

Definition A.2

A semifinite spectral triple \((\mathcal {A},\mathcal {H},D)\) relative to \((\mathcal {N},\tau )\) is given by a \({\mathbb {Z}}_{2}\)-graded Hilbert space \(\mathcal {H}\), a graded ∗-algebra \(\mathcal {A}\subset \mathcal {N}\) with (graded) representation on \(\mathcal {H}\) and a densely defined odd unbounded self-adjoint operator D affiliated to \(\mathcal {N}\) such that

  1. (1)

    [D,a]± is well-defined on Dom(D) and extends to a bounded operator on \(\mathcal {H}\) for all \(a\in \mathcal {A}\),

  2. (2)

    \(a(1+D^{2})^{-1/2}\in \mathcal {K}_{\mathcal {N}}\) for all \(a\in \mathcal {A}\).

For complex algebras and spaces, we can also remove the gradings, in which case the semifinite spectral triple is called odd (otherwise even).

If we take \(\mathcal {N}=\mathcal {B}(\mathcal {H})\) and τ = Tr, then we recover the usual definition of a spectral triple.

Theorem A.3 ([23, 44])

Let \((\mathcal {A},\mathcal {H},D)\) be a complex semifinite spectral triple associated to \((\mathcal {N},\tau )\) with A the C-completion of \(\mathcal {A}\). Then \((\mathcal {A},\mathcal {H},D)\) determines a class in KK(A,C) with C a subalgebra of \(\mathcal {K}_{\mathcal {N}}\). If A is separable, we can take C to be separable. If\((\mathcal {A},\mathcal {H},D)\) is odd, then the triple determines a class in KK1(A,C).

1.1.1 A.1.1 The Semifinite Index Pairing

Semifinite spectral triples \((\mathcal {A},\mathcal {H},D)\) with \(\mathcal {A}\) separable and ungraded can be paired with K-theory elements by the following composition

$$ K_{j}(A) \times KK^{j}(A, C) \to K_{0}(C) \xrightarrow{\tau_{\ast}} {\mathbb{R}}, $$
(1)

with the class in KKj(A,C) coming from Theorem A.3. The image of the semifinite index pairing is a countably generated subset of \({\mathbb {R}}\) and, as such, can potentially detect finer invariants than the usual pairing of K-theory with K-homology. We call the map from (1) the semifinite index pairing of a K-theory class with a semifinite spectral triple and use the notation \(\langle [e],[(\mathcal {A},\mathcal {H},D)]\rangle \) for [e] ∈ Kj(A) to represent this pairing.

We can also describe the semifinite index pairing analytically using the semifinite Fredholm index. Given a semifinite von Neumann algebra \((\mathcal {N},\tau )\), an operator \(T\in \mathcal {N}\) that is invertible modulo \(\mathcal {K}_{\mathcal {N}}\) has semifinite Fredholm index

$$\text{Index}_{\tau}(T) = \tau(P_{\text{Ker}(T)}) - \tau(P_{\text{Ker}(T^{*})}). $$

We can use the semifinite index to write down an analytic formula for the semifinite pairing. Let \(\mathcal {A}^{\sim }=\mathcal {A}\oplus {\mathbb {C}}\) be the minimal unitisation of \(\mathcal {A}\). Given \(b\in M_{n}(\mathcal {A}^{\sim })\) we let

$$\hat{b} = \begin{pmatrix} b & 0 \\ 0 & 1_{b} \end{pmatrix}, $$

where 1b = πn(b) and \(\pi ^{n} : M_{n}(\mathcal {A}^{\sim }) \to M_{n}({\mathbb {C}})\) is the quotient map coming from the unitisation.

Proposition A.4 ([23], Proposition 2.13)

Let \((\mathcal {A},\mathcal {H},D)\) be a complex semifinite spectral triple relative to\((\mathcal {N},\tau )\) with \(\mathcal {A}\) separableand D invertible. Let e be a projector in \(M_{n}(\mathcal {A}^{\sim })\), which represents \([e]\in K_{0}(\mathcal {A})\) and u a unitary in \(M_{n}(\mathcal {A}^{\sim })\) representing \([u]\in K_{1}(\mathcal {A})\). In the even case, define \(T_{\pm } = \frac {1}{2}(1\mp \gamma )T\frac {1}{2}(1\pm \gamma )\) withγ the grading on \(\mathcal {H}\). Then with F = D|D|− 1 andP = (1 + F)/2, the semifinite index pairing is represented by

$$\begin{array}{@{}rcl@{}} \langle [e] - [1_{e}], (\mathcal{A},\mathcal{H},D)\rangle &=& \text{Index}_{\tau\otimes \text{Tr}_{{\mathbb{C}}^{2n}}}(\hat{e}(F \otimes 1_{2n})_{+} \hat{e}), \qquad \textrm{even case}, \\ \langle [u], (\mathcal{A},\mathcal{H},D) \rangle &=& \text{Index}_{\tau\otimes \text{Tr}_{{\mathbb{C}}^{2n}}}\left( (P \otimes 1_{2n})\hat{u}(P \otimes 1_{2n}) \right), \qquad \textrm{odd case}. \end{array} $$

If D is not invertible, we take m > 0 and define the double spectral triple \((\mathcal {A},\mathcal {H}\oplus \mathcal {H},D_{m})\) relative to \((M_{2}(\mathcal {N}),\tau \otimes \text {Tr}_{{\mathbb {C}}^{2}})\), where the operator Dm and the action of \(\mathcal {A}\) is given by

$$\begin{array}{@{}rcl@{}} &D_{m} = \begin{pmatrix} D & m \\ m & -D \end{pmatrix}, \qquad a\mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \end{array} $$

for all \(a\in \mathcal {A}\). If \((\mathcal {A},\mathcal {H},D)\) is graded by γ, then the double is graded by \(\hat {\gamma } = \gamma \oplus (-\gamma )\). Doubling the spectral triple does not change the K-homology class and ensures that the unbounded operator Dm is invertible [29].

Remark A.5 (Semifinite spectral triples and torsion invariants)

The pairing of (1) is valid in both the complex and real setting. The pairing is, however, unhelpful in the case of torsion invariants as if [x] ∈ K0(C) has finite order, then τ([x]) = 0. In particular, torsion invariants are common in real K-theory and play an important role in, for example, characterising the topological phase of a free-fermionic system [54]. In order to access torsion invariants we do not take the induced trace and consider the more general product

$$ K_{j}(A) \times KK^{d}(A, C) \to K_{j-d}(C) $$
(2)

for real or complex algebras. Hence we work with Kasparov modules directly. Unbounded Kasparov theory is a useful method for computing internal Kasparov products, as one must when the product represents a torsion class.

The image of the K-theoretic pairing from (2) can be interpreted as a Clifford module, a finitely generated subspace of a countably generated C-module EC with graded Clifford action. We can associate an analytic index to elements in KOjd(C) or Kjd(C) via an analogue of Atiyah–Bott–Shapiro theory of Clifford modules, see [4, 18].

1.1.2 A.1.2 Kasparov Modules to Semifinite Spectral Triples

We can associate a Kasparov module to a semifinite spectral triple by Theorem A.3. One may ask if the converse is true. Given an unbounded Kasparov A-B module with B containing a faithful semifinite norm lower-semicontinuous trace (or tracial weight), we can often construct semifinite spectral triples using the dual trace construction (see Section ?? or [68] for a simple example).

The dual-trace method of constructing semifinite spectral triples has the advantage that the algebra B is often more closely related to the problem under consideration than the algebra C from Theorem A.3. In particular, the semifinite index pairing from (1) can be rewritten with B in the place of C.

Given a sufficiently regular (complex) semifinite spectral triple from an unbounded Kasparov module, we may use the semifinite local index formula to compute the K-theoretic semifinite index pairing. As the local index formula is a cyclic expression involving traces and derivations, semifinite spectral triples and index theory can be employed in order to more easily compute pairings of K-theory classes with unbounded Kasparov modules as in (1).

1.2 A.2 Summability of Non-unital Spectral Triples

Spectral triples often contain more than just K-homological data. Hence we introduce extra structure on spectral triples that have the interpretation of a differential structure and measure theory. If the algebra is non-unital and non-local in the sense of [78], then we require the noncommutative measure theory developed in [22, 23]. Our brief exposition follows [32, Section 2]. In order to discuss smoothness and summability for non-unital spectral triples, we need to introduce an analogue of Lp-spaces for operators and weights over a semifinite von Neumann algebra \((\mathcal {N}, \tau )\).

Definition A.6

Let D be a densely defined self-adjoint operator affiliated to \(\mathcal {N}\). Then for each \(p\geqslant 1\) and s > p we define a weight φs on \(\mathcal {N}\) by

$$\varphi_{s}(T) = \tau\left( (1+D^{2})^{-s/4} T (1+D^{2})^{-s/4}\right) $$

for T a positive element in \(\mathcal {N}\). We define the subspace \(\mathcal {B}_{2}(D,p)\) of \(\mathcal {N}\) by

$$\begin{array}{@{}rcl@{}} \mathcal{B}_{2}(D,p) &=& \bigcap_{s>p}\left( \text{Dom}(\varphi_{s})^{1/2}\cap (\text{Dom}(\varphi_{s})^{1/2})^{*}\right),\\ \text{Dom}(\varphi_{s})^{1/2} &=& \big\{ T\in \mathcal{N}\,:\, \varphi_{s}(T^{*}T) < \infty \big\}. \end{array} $$

Take \(T\in \mathcal {B}_{2}(D,p)\). The norms

$$\mathcal{Q}_{n}(T) = \left( \|T\|^{2} + \varphi_{p + 1/n}(|T|^{2}) + \varphi_{p + 1/n}(|T^{*}|^{2})\right)^{1/2} $$

for n = 1, 2,… take finite values on \(\mathcal {B}_{2}(D,p)\) and provide a topology on \(\mathcal {B}_{2}(D,p)\) stronger than the norm topology. The space \(\mathcal {B}_{2}(D,p)\) is a Fréchet algebra [23, Proposition 1.6] and can be interpreted as the bounded square integrable operators.

To introduce the bounded integrable operators, first take the span of products, \(\mathcal {B}_{2}(D,p)^{2}\), and define the norms

$$\mathcal{P}_{n}(T) = \inf\left\{\sum\limits_{i = 1}^{k} \mathcal{Q}_{n}(T_{1,i})\mathcal{Q}_{n}(T_{2,i})\,:\, T= \sum\limits_{i = 1}^{k} T_{1,i}T_{2,i},\ T_{1,i},\,T_{2,i}\in\mathcal{B}_{2}(D,p) \right\}, $$

where the sums are finite and the infimum is over all possible such representations of T. It is shown in [23, p12–13] that \(\mathcal {P}_{n}\) are norms on \(\mathcal {B}_{2}(D,p)^{2}\).

Definition A.7

Let D be a densely defined and self-adjoint operator and \(p\geqslant 1\). We define \(\mathcal {B}_{1}(D,p)\) to be the completion of \(\mathcal {B}_{2}(D,p)^{2}\) with respect to the family of norms \(\{\mathcal {P}_{n}\,:\, n = 1,2,\ldots \}\).

Definition A.8

A semifinite spectral triple \((\mathcal {A},\mathcal {H},D)\) relative to \((\mathcal {N}, \tau )\) is said to be finitely summable if there exists s > 0 such that for all \(a\in \mathcal {A}\), \(a(1+D^{2})^{-s/2}\in \mathcal {L}^{1}(\mathcal {N},\tau )\). In such a case we let

$$p = \inf\{s>0\,:\, \forall a\in\mathcal{A}, \,\tau(|a|(1+D^{2})^{-s/2}) < \infty \} $$

and call p the spectral dimension of \((\mathcal {A},\mathcal {H},D)\).

Note that \(|a|(1+D^{2})^{-s/2}\in \mathcal {L}^{1}(\mathcal {N},\tau )\) by the polar decomposition a = v|a|, which does not require |a| to be in \(\mathcal {A}\). For the definition of spectral dimension to have meaning, we require that \(\tau (a(1+D^{2})^{-s/2})\geqslant 0\) for \(a\geqslant 0\), a fact that follows from [12, Theorem 3]. For a semifinite spectral triple \((\mathcal {A},\mathcal {H},D)\) to be finitely summable with spectral dimension p, it is a necessary condition that \(\mathcal {A}\subset \mathcal {B}_{1}(D,p)\) [23, Proposition 2.17].

Definition A.9

Given a densely-defined self-adjoint operator D, set \(\mathcal {H}_{\infty } = \bigcap _{k\geqslant 0}\text {Dom}(D^{k})\). For an operator \(T:\mathcal {H}_{\infty }\to \mathcal {H}_{\infty }\), we define

$$\begin{array}{@{}rcl@{}} \delta(T) = [|D|,T], \quad L(T) =\! (1+D^{2})^{-1/2}[D^{2},T],\!\! \quad R(T) \,=\, [D^{2},T](1+D^{2})^{-1/2}. \end{array} $$

One has that (cf. [26, 30])

$$\bigcap_{n\geqslant 0} \text{Dom}(L^{n}) = \bigcap_{n\geqslant 0} \text{Dom}(R^{n}) = \bigcap_{k,l\geqslant 0}\text{Dom}(L^{k}\circ R^{l}) = \bigcap_{n\geqslant 0} \text{Dom}(\delta^{n}). $$

We see that to define δk(T), we require that \(T: \mathcal {H}_{k} \to \mathcal {H}_{k}\) for \(\mathcal {H}_{k} = \bigcap _{l = 0}^{k} \text {Dom}(D^{l})\).

Definition A.10

Let D be a densely defined self-adjoint operator affiliated to \(\mathcal {N}\) and \(p\geqslant 1\). Then define for k = 0, 1,…

$${\mathcal{B}_{1}^{k}}(D,p) = \left\{ T\in\mathcal{N} \,\left\vert \, T:\mathcal{H}_{l}\to\mathcal{H}_{l} \text{ and }\delta^{l}(T)\in\mathcal{B}_{1}(D,p)\,\, \forall l = 0,\ldots,k \right. \right\}, $$
$${\mathcal{B}_{2}^{k}}(D,p) = \left\{ T\in\mathcal{N} \,\left\vert \, T:\mathcal{H}_{l}\to\mathcal{H}_{l} \text{ and }\delta^{l}(T)\in\mathcal{B}_{2}(D,p)\,\, \forall l = 0,\ldots,k \right. \right\} $$

as well as

$$\mathcal{B}_{1}^{\infty}(D,p) = \bigcap_{k = 0}^{\infty} {\mathcal{B}_{1}^{k}}(D,p), \qquad \mathcal{B}_{2}^{\infty}(D,p) = \bigcap_{k = 0}^{\infty} {\mathcal{B}_{2}^{k}}(D,p). $$

For any k (including \(\infty \)), we equip \({\mathcal {B}_{1}^{k}}(D,p)\) with the topology induced by the seminorms

$$\mathcal{P}_{n,l}(T) = \sum\limits_{j = 0}^{l} \mathcal{P}_{n} (\delta^{j}(T)) $$

for \(T\in \mathcal {N}\), l = 0,…,k and \(n\in {\mathbb {N}}\).

If we are interested in index theory in the non-compact setting, we need to control the integrability of both functions and their derivatives. The noncommutative analogue of this regularity turns out to be a finitely summable spectral triple but with additional smoothness properties.

Definition A.11

Let \((\mathcal {A},\mathcal {H},D)\) be a semifinite spectral triple relative to \((\mathcal {N},\tau )\). We say that \((\mathcal {A},\mathcal {H},D)\) is QCk-summable if it is finitely summable with spectral dimension p and

$$\mathcal{A} \cup [D,\mathcal{A}] \subset {\mathcal{B}_{1}^{k}}(D,p). $$

We say that \((\mathcal {A},\mathcal {H},D)\) is smoothly summable if it is QCk-summable for all \(k\in {\mathbb {N}}\), that is

$$\mathcal{A}\cup [D,\mathcal{A}] \subset \mathcal{B}_{1}^{\infty}(D,p). $$

For a smoothly summable spectral triple \((\mathcal {A},\mathcal {H},D)\), we can introduce the δ-φ topology on \(\mathcal {A}\) by the seminorms

$$ \mathcal{A} \ni a \mapsto \mathcal{P}_{n,k}(a) + \mathcal{P}_{n,k}([D,a]) $$
(3)

for \(n,k\in {\mathbb {N}}\). The completion of \(\mathcal {A}\) in the δ-φ topology is Fréchet and closed under the holomorphic functional calculus [23, Proposition 2.20]. We finish this section with a sufficient and checkable condition of finite summability of spectral triples.

Proposition A.12 ([23], Proposition 2.16)

Let \((\mathcal {A},\mathcal {H},D)\) be a semifinite spectral triple. If \(\mathcal {A} \subset \mathcal {B}_{1}^{\infty }(D, p)\) for some \(p\geqslant 1\), then \((\mathcal {A},\mathcal {H},D)\) is finitely summable with spectral dimension given by the infimum of such p’s. More generally, if \(\mathcal {A}\subset \mathcal {B}_{2}(D,p)\mathcal {B}_{2}^{\lfloor p\rfloor + 1}(D,p)\) for \(p\geqslant 1\), then \((\mathcal {A},\mathcal {H},D)\) is finitely summable with spectral dimension given by the infimum of such p’s.

Lemma 5.2 offers a slight variation of this result in order to get sharp results on localisation. Lemma 5.2 has essentially the same conclusion, though different statement and proof, as [22, Proposition 6.6].

1.3 A.3 The Local Index Formula

We now briefly recall the semifinite local index formula from [23], which is an extension of previous formulas, [26, 27, 30, 79], to non-unital and non-local semifinite (complex) spectral triples. We note that the local index formula requires a smoothly summable semifinite spectral triple of finite spectral dimension. This may seem restrictive, but turns out to be satisfied in our examples.

To define the resolvent cocycle, we first establish the notation Rs(λ) = (λ − (1 + s2 + D2))− 1.

Definition A.13 ([23, 26, 27])

Let \((\mathcal {A},\mathcal {H},D)\) be a smoothly summable complex semifinite spectral triple relative to \((\mathcal {N},\tau )\) with spectral dimension p. For a ∈ (0, 1/2), let be the vertical line \(\ell =\{a+iv\,:\,v\in \mathbb {R}\}\). We define the resolvent cocycle \(({\phi _{m}^{r}})_{m = 0}^{M}\) for R(r) > (1 − m)/2 as

$$\begin{array}{@{}rcl@{}} {\phi_{m}^{r}}(a_{0},\ldots,a_{m}) = \frac{\eta_{m}}{2\pi i} {\int}_{0}^{\infty} s^{m}\, \!\tau\!\left( \!\gamma\! {\int}_{\ell} \lambda^{-p/2-r} a_{0} R_{s}(\lambda) [D,a_{1}] R_{s}(\lambda) {\cdots} [D,a_{m}]R_{s}(\lambda) \,\mathrm{d}\lambda\right)\mathrm{d}s, \end{array} $$

where

$$\eta_{m} = \left( -\sqrt{2i}\right)^{\bullet} 2^{m + 1} \frac{{\Gamma}(m/2 + 1)}{{\Gamma}(m + 1)} $$

with ∙ = 0, 1 depending on whether the spectral triple is even or odd.

The integral over is well-defined by [23, Lemma 3.3]. The index formula is a pairing of a cocycle with an algebraic chain. If \(e\in \mathcal {A}^{\sim }\) is a projection, we define Ch0(e) = e and for \(k\geqslant 1\),

$$\text{Ch}^{2k}(e) = (-1)^{k}\frac{(2k)!}{k!}\,(e-1/2)\otimes e\otimes\cdots\otimes e\in(\mathcal{A}^{\sim})^{\otimes (2k + 1)}. $$

If \(u\in \mathcal {A}^{\sim }\) is a unitary, then we define for \(k\geqslant 0\)

$$\text{Ch}^{2k + 1}(u) = (-1)^{k} k!\, u^{*}\otimes u\otimes \cdots\otimes u^{*}\otimes u \in (\mathcal{A}^{\sim})^{\otimes (2k + 2)}. $$

We split up the theorem into odd and even cases.

Theorem A.14 ([23, 30, 79])

Let \((\mathcal {A}, \mathcal {H}, D)\) be an odd smoothly summable complex semifinite spectral triple relative to \((\mathcal {N},\tau )\) and with spectral dimension p. Let \(N = \lfloor \frac {p}{2}\rfloor + 1\), where ⌊⋅⌋ is the floor function, and let u be a unitary in the unitisation of \(\mathcal {A}\). The semifinite index pairing can be computed with the resolvent cocycle

$$\langle [u],[(\mathcal{A},\mathcal{H},D)]\rangle = \frac{-1}{\sqrt{2\pi i}} \text{res}_{r=(1-p)/2} \sum\limits_{m = 1,\text{odd}}^{2N-1} {\phi_{m}^{r}}(\text{Ch}^{m}(u)) $$

and the function \(r\mapsto \sum \limits _{m = 1,\text {odd}}^{2N-1} {\phi _{m}^{r}}(\text {Ch}^{m}(u))\) analytically continues to a deleted neighbourhood of r = (1 − p)/2.

Theorem A.15 ([23, 30, 79])

Let \((\mathcal {A}, \mathcal {H}, D)\) be an even smoothly summable complex semifinite spectral triple relative to \((\mathcal {N},\tau )\) and with spectral dimension p. Let \(N = \lfloor \frac {p + 1}{2}\rfloor \) and\(e\in \mathcal {A}^{\sim }\) be a self-adjoint projection. The semifinite index pairing can be computed by the resolvent cocycle

$$\langle [e]-[1_{e}], [(\mathcal{A},\mathcal{H},D)]\rangle = \text{res}_{r=(1-p)/2} \sum\limits_{m = 0,\text{even}}^{2N} {\phi_{m}^{r}}(\text{Ch}^{m}(e) - \text{Ch}^{m}(1_{e})) $$

and the function \(r\mapsto \sum \limits _{m = 0,\text {even}}^{2N} \phi _{m}(\text {Ch}^{m}(e))\) analytically continues to a deleted neighbourhood of r = (1 − p)/2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourne, C., Rennie, A. Chern Numbers, Localisation and the Bulk-edge Correspondence for Continuous Models of Topological Phases. Math Phys Anal Geom 21, 16 (2018). https://doi.org/10.1007/s11040-018-9274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-018-9274-4

Keywords

Mathematics Subject Classification (2010)

Navigation